跳到主要內容

臺灣博碩士論文加值系統

(44.200.117.166) 您好!臺灣時間:2023/10/03 17:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:白鎮瑜
研究生(外文):Bai, Jhen-Yu
論文名稱:階層式無人機飛航管理系統雛型建構
論文名稱(外文):Prototype Construction of Hierarchical Unmanned Aircraft System (UAS) Traffic Management (UTM) System
指導教授:林清一林清一引用關係
指導教授(外文):Lin, Chin-E
口試委員:邵珮琪
口試委員(外文):Shao, Pei-Chi
口試日期:2021-08-03
學位類別:碩士
校院名稱:國立成功大學
系所名稱:民航研究所
學門:運輸服務學門
學類:航空學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:英文
論文頁數:80
中文關鍵詞:無人機系統無人機飛航管理系統無人機感測與避撞
外文關鍵詞:UAShierarchical UTM systemUAV detect and avoid (DAA)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:137
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
無人機提供了即時性,機動性及方便性,但也威脅到了有人機的任務執行,例如,無人機入侵機場的跑道或空域,造成有人機起降之衝突。各國除了訂定操作的限制,也積極開發無人機管理系統。臺灣民航局仿效各國投入了無人機飛航管理系統的開發,無人機飛航管理系統轄下區分成眾多子系統,其中之一即是無人機的即時路徑追蹤及管理。本論文主要目的為初步建構出無人機路徑追蹤,碰撞避免的無人機飛航管理系統,透過追蹤無人機即時位置,期待該系統能提供未來無人機飛行的安全性.本系統整合了路徑追蹤顯示和碰撞警示的API,採用了類似廣播式自動回報監視(ADS-B)中,航情警示與空中避撞系統(TCAS)的防撞隔離泡概念,透過C#及ASP.NET CORE語言初步建構,來對無人機進行分級碰撞警示之監控與管理。
無人機資訊能即時的顯示在前端顯示頁面中以便航管員對無人機進行管制。通過對碰撞警示採取了情境模擬,了解警示系統及防撞機制大致符合預期,能正確地發出地區接近,交通諮詢(TA)及排解諮詢(RA)的警告並且模擬航管員對無人機飛行員下指令情景。從階層式無人機飛航管理系統介紹到初步模擬測試無人機碰撞警示及避讓,希望為國內未來的無人機產業作一個貢獻。
關鍵字:無人機系統、無人機飛航管理系統、無人機感測與避撞
Unmanned aerial vehicles (UAV) have become one of the major challenges to the aviation industry recently. New regulations and systems are developing in many countries. As the National Aeronautics and Space Administration (NASA) announced the concept of unmanned aircraft system (UAS) traffic management (UTM) system, every country, including Taiwan, began to develop and apply this opinion in UAV traffic management. The concept of the UTM system describes the framework and limitations of different scenarios for future UAVs. The operations are classified by different maximum take-off weights (MTOW) and mission complexity, in addition to avoid collisions in limited airspace and maximize the use of airspace. The unmanned aircraft will ultimately not interfere with the manned aircraft. In order to realize these concepts, the UTM system is divided by many subsystems. In the proposed UTM system, a coordination mechanism between the subsystems is required. This means that each part of the UTM system is equally important. In fact, the communication and automatic avoidance of UAVs require the advanced skills to solve the problem comprehensively. This thesis presents the notion of hierarchal UTM system architecture in Tainan, Taiwan, attempt to construct and simulate the scenario of UAV collision avoidance.
Keywords: UAS, hierarchical UTM system, UAV detect and avoid (DAA)
摘要I
ABSTRACT II
ACKNOWLEDGEMENT III
TABLE OF CONTENTS IV
LIST OF TABLES VI
LIST OF FIGURES VII
CHAPTER1 1
1.1 Introduction of UAV 1
1.2 Introduction of UTM 2
1.3 Motivation 3
1.4 Literature survey 4
1.5 Main idea 9
1.6 Thesis outline 10
CHAPTER2 12
2.1 Taiwan UTM architecture overview 12
2.2 Regional UTM architecture considerations 15
2.2.1 Authentication of UAV 16
2.2.2 Geo-fencing, adjustments and airspace 17
2.2.3 Communication, navigation and surveillance 18
2.2.4 System interconnection 19
CHAPTER3 21
3.1 Pre-flight phase 21
3.2 In-flight phase 24
3.3 Post-flight phase 26
CHAPTER4 28
4.1 Overall Structure and design logic 28
4.1.1 UAV monitoring interface 30
4.1.2 API (System backend) 34
4.2 DAA concept and design logic 36
4.3 Collision avoidance system simulation and implementation 40
4.3.1 Implementation of monitoring interface 41
4.3.2 System simulation and implementation 46
CHAPTER5 76
5.1 Conclusion 76
5.2 Future Work 77
REFERENCE 78
[1]R. Fontanella et al., "A standardized approach to derive system specifications for drones operating in the future UTM scenario," in 2017 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), 2017: IEEE, pp. 250-255.
[2]P. Kopardekar, J. Rios, T. Prevot, M. Johnson, J. Jung, and J. E. Robinson, "Unmanned aircraft system traffic management (UTM) concept of operations," in AIAA aviation forum, 2016.
[3]A. K. Ishihara, J. Jung, and J. Rios, "Rapid trajectory prediction for a fixed-wing UAS in a uniform wind field with specified arrival times," AIAA, vol. 3149, pp. 13-17, 2016.
[4]F. A. Forecast, "Fiscal Years 2016-2036," Federal Aviation Administration, 2016.
[5]F. A. Administration, "Part 107 Airspace Authorizations," 2021. [Online]. Available: https://www.faa.gov/uas/commercial_operators/part_107_airspace_authorizations/.
[6]F. A. Administration, "UAS_Airspacecard," 2018. [Online]. Available: https://www.faa.gov/about/initiatives/airshow/media/UAS_Airspacecard.pdf.
[7]I. C. A. Organization, "Unmanned Aircraft Systems Traffic Management (UTM) – A Common Framework with Core Principles for Global Harmonization," p. 3, 2020.
[8]F. A. Administration, "Unmanned Aircraft System Traffic Management (UTM)," 2020. [Online]. Available: https://www.faa.gov/uas/research_development/traffic_management/.
[9]C. E. Lin and P. Shao, "Development of Hierarchical UAS Traffic Management (UTM) in Taiwan," in Journal of Physics: Conference Series, 2020, vol. 1509, no. 1: IOP Publishing, p. 012012.
[10]M. R. Civil Aeronautics Administration, "Civil Aviation Act," p. 45 46, 4/25 2018.
[11]L. Ren et al., "Small unmanned aircraft system (sUAS) categorization framework for low altitude traffic services," in 2017 IEEE/AIAA 36th Digital Avionics Systems Conference (DASC), 2017: IEEE, pp. 1-10.
[12]A. P. Air, "Determining safe access with a best-equipped, best-served model for small unmanned aircraft systems," NASA (Ed.), 2015.
[13]T. Jiang, J. Geller, D. Ni, and J. Collura, "Unmanned Aircraft System traffic management: Concept of operation and system architecture," International journal of transportation science and technology, vol. 5, no. 3, pp. 123-135, 2016.
[14]M. Scribner, "Keeping the Skies Open for Drones," Competitive Enterprise Institute, 2014.
[15]M. Johnson et al., "Flight test evaluation of an unmanned aircraft system traffic management (UTM) concept for multiple beyond-visual-line-of-sight operations," in 12th USA/Europe Air Traffic Management Research and Development Seminar (ATM2017), 2017.
[16]J. Homola, T. Prevot, J. Mercer, N. Bienert, and C. Gabriel, "UAS traffic management (UTM) simulation capabilities and laboratory environment," in 2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC), 2016: IEEE, pp. 1-7.
[17]J. Homola, Q. Dao, L. Martin, J. Mercer, C. Mohlenbrink, and L. Claudatos, "Technical capability level 2 unmanned aircraft system traffic management (UTM) flight demonstration: Description and analysis," in 2017 IEEE/AIAA 36th Digital Avionics Systems Conference (DASC), 2017: IEEE, pp. 1-10.
[18]S. Smearcheck, S. Calhoun, W. Adams, J. Kresge, and F. Kunzi, "Analysis of alerting performance for detect and avoid of unmanned aircraft systems," in Proceedings of IEEE/ION PLANS 2016, 2016, pp. 710-730.
[19]C. Muñoz et al., "DAIDALUS: detect and avoid alerting logic for unmanned systems," in 2015 IEEE/AIAA 34th Digital Avionics Systems Conference (DASC), 2015: IEEE, pp. 5A1-1-5A1-12.
[20]L. Fern, R. C. Rorie, J. Pack, J. Shively, and M. Draper, "An evaluation of Detect and Avoid (DAA) displays for unmanned aircraft systems: The effect of information level and display location on pilot performance," in 15th AIAA Aviation Technology, Integration, and Operations Conference, 2015, p. 3327.
[21]C. Lin, P. Shao, H. Bui, and Y. Lin, "DAA Solution on UTM," in 2021 Integrated Communications Navigation and Surveillance Conference (ICNS), 2021: IEEE, pp. 1-8.
[22]C. E. Lin, P.-C. Shao, and Y.-Y. Lin, "System operation of regional UTM in Taiwan," Aerospace, vol. 7, no. 5, p. 65, 2020.
[23]C. E. Lin, T.-P. Chen, P.-C. Shao, Y.-C. Lai, T.-C. Chen, and Y.-C. Yeh, "Prototype Hierarchical UAS Traffic Management System in Taiwan," in 2019 Integrated Communications, Navigation and Surveillance Conference (ICNS), 2019: IEEE, pp. 1-13.
[24]G. Zhu and P. Wei, "Low-altitude UAS traffic coordination with dynamic geofencing," in 16th AIAA aviation technology, integration, and operations conference, 2016, p. 3453.
[25]M. N. Stevens and E. M. Atkins, "Geofencing in immediate reaches airspace for unmanned aircraft system traffic management," in 2018 AIAA Information Systems-AIAA Infotech@ Aerospace, 2018, p. 2140.
[26]F. L. Templin, R. Jain, G. Sheffield, P. Taboso-Ballesteros, and D. Ponchak, "Requirements for an integrated UAS CNS architecture," in 2017 Integrated Communications, Navigation and Surveillance Conference (ICNS), 2017: IEEE, pp. 2E4-1-2E4-11.
[27]F. L. Templin, R. Jain, G. Sheffield, P. Taboso-Ballesteros, and D. Ponchak, "Considerations for an integrated UAS CNS architecture," in 2017 Integrated Communications, Navigation and Surveillance Conference (ICNS), 2017: IEEE, pp. 2E3-1-2E3-12.
[28]C. E. Lin, C.-S. Hsieh, C.-C. Li, P.-C. Shao, Y.-H. Lin, and Y.-C. Yeh, "An ADS-B like communication for UTM," in 2019 Integrated Communications, Navigation and Surveillance Conference (ICNS), 2019: IEEE, pp. 1-12.
[29]F. A. Administration, "Introduction to TCAS ii " vol. Version 7.1, 2/28 2011. [Online]. Available: https://www.faa.gov/documentlibrary/media/advisory_circular/tcas%20ii%20v7.1%20intro%20booklet.pdf.
[30]I. C. A. Organization, "Airborne Collision Avoidance System (ACAS) Manual," vol. First Edition, 2006. [Online]. Available: https://www.icao.int/Meetings/anconf12/Document%20Archive/9863_cons_en.pdf.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top