跳到主要內容

臺灣博碩士論文加值系統

(44.222.104.206) 您好!臺灣時間:2024/05/25 23:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林長毅
研究生(外文):Lin, Chang-I
論文名稱:有機金屬框架MIL-100(Fe)應用於固態燃料催化劑之成效與分析
論文名稱(外文):Effect and analysis of organic metal framework MIL-100 (Fe) for solid propellant catalyst
指導教授:吳志勇吳志勇引用關係
指導教授(外文):Wu, Chih-Yung
口試委員:黃朝偉陳冠邦
口試委員(外文):Huang, Chao-Wei
口試日期:2021-09-14
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:28
中文關鍵詞:固態火箭燃料催化劑有機金屬框架氧化鐵燃燒速率
外文關鍵詞:MIL-100(Fe)solid propellantcatalystiron oxideburning velocity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:86
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
固態火箭不只在人類的太空任務中擁有重要的地位,在軍事國防中也相當廣泛地被運用 ,而添加固態燃料催化劑是作為調整固態火箭燃燒效能所常用的手段,有關催化劑的研究將對改良火箭性能有著直接的影響 。以往火箭催化劑大多使用過渡金屬氧化物或奈米金屬粉末,而影響催化劑效能的一大因素便是擁有較大的表面積以加速氧化劑的分解 。另一方面,有機金屬框架因其普遍具有較大的表面積而在近年來常被運用在非勻相混合物的
催化,而本研究將嘗試使用有機金屬框架 MIL-100(Fe)來當作固態燃料催化劑,並與傳統催化劑Fe2O3這兩者之催化效能進行比較,先對 MIL-100(Fe)進行熱重分析以預測其催化效能,再以環氧樹脂為燃料和固化劑、以硝酸鉀和過氯酸銨為氧化劑 ,加入上述兩種催化劑 來製作固態燃料藥柱 、建立一套藥柱的製作流程,並建立觀測其燃燒速率的實驗平台,最後對兩者的燃燒速率結果進行分析。 實驗結果表明添加 MIL-100(Fe)能增加藥柱的燃燒速率,並在固態燃料催化劑的運用上具有相當大的潛力。
Solid propellants not only play an important role in human space missions but are also widely used in military and national defense. The addition of solid propellant catalysts is a common means to adjust the combustion efficiency of solid propellants. The research of catalysts is important to the development of solid propellants. In the past, most rocket catalysts used transition metal oxides or nano metal powders, and a major factor affecting the performance of the catalyst was the large surface area to accelerate the decomposition of the oxidant. On the other hand, organometallic framework (MOF) has been used in the catalysis of heterogeneous mixtures in recent years because of their generally large surface area. This study will try to use the MOF MIL-100 (Fe) as a solid propellant catalyst. The catalytic performance of the catalyst is compared with the traditional catalyst Fe2O3. First, the thermogravimetric analysis (TGA) of MIL-100 (Fe) will be performed to predict its catalytic performance. Then we will use epoxy resin as fuel and curing agent, potassium nitrate and ammonium perchlorate as oxidant, and the above two catalysts to make solid propellant grains and test the burning velocity of these grains. In this progress, a set of the production process of grains and an experimental platform for observing the burning velocity is established. The results show that the burning velocity could be enhanced by adding MIL-100(Fe) and could be the potential catalyst of solid propellant.
摘要 ii
Extended Abstract iii
致謝 x
目錄 xi
圖目錄 xii
表目錄 xiii
第1章 緒論 1
§1-1 固態燃料的背景與特性 1
§1-2 研究動機 3
第2章 文獻回顧與研究目的 4
§2-1 文獻回顧 4
2.1.1 催化劑影響燃燒表現的因素 4
2.1.2 有機金屬框架MIL-100(Fe)簡介 4
2.1.3 RNX燃料簡介 5
§2-2 研究目的 6
第3章 實驗方法與實驗設備 7
§3-1 實驗設備 7
3.1.1 固態燃料藥柱原料與製作器材介紹 7
3.1.2 熱重分析儀(Thermogravimetric analysis, TGA) 9
§3-2 實驗方法 10
3.2.1 熱重分析 10
3.2.2 RNX藥柱製備 10
3.2.3 常壓環境退縮率量測 11
第4章 結果與討論 16
§4-1 熱重分析儀分析結果 16
§4-2 藥柱燃燒速率測試結果 20
第5章 結論 26
參考文獻 27
[1]Sutton, G. P., & Biblarz, O. (2016). Rocket propulsion elements: John Wiley & Sons.
[2]Richard Nakka's Experimental Rocketry Web Site. Retrieved from http://www.nakka-rocketry.net/
[3]Joshi, S. S., Patil, P. R., & Krishnamurthy, V. (2008). Thermal Decomposition of Ammonium Perchlorate in the Presence of Nanosized Ferric Oxide. Defence Science Journal, 58(6).
[4]Kishore, K., & Sunitha, M. (1979). Effect of transition metal oxides on decomposition and deflagration of composite solid propellant systems: a survey. AIAA Journal, 17(10), 1118-1125.
[5]Ma, Z., Li, F., & Bai, H. (2006). Effect of Fe2O3 in Fe2O3/AP composite particles on thermal decomposition of AP and on burning rate of the composite propellant. Propellants, Explosives, Pyrotechnics: An International Journal Dealing with Scientific and Technological Aspects of Energetic Materials, 31(6), 447-451.
[6]Maggi, F., Dossi, S., Paravan, C., Galfetti, L., Cianfanelli, S., & Marra, G. (2017). Detailed properties of iron oxide solid propellant catalyst. Paper presented at the 7th European Conference for Aerospace Sciences (EUCASS 2017).
[7]Yadav, N., Srivastava, P. K., & Varma, M. (2021). Recent advances in catalytic combustion of AP-based composite solid propellants. Defence Technology, 17(3), 1013-1031.
[8]BURNSIDE, C. (1975). Correlation of ferric oxide surface area and propellant burning rate. Paper presented at the 13th Aerospace Sciences Meeting.
[9]Fujimura, K., & Miyake, A. (2010). Effect of the particle size and specific surface area of ferric oxide catalyst on the burning rate of AP/HTPB solid propellant. Sci Technol Energ Mater, 71(3-4), 65-68.
[10]Halawy, S. A., & Mohamed, M. A. (1994). The Role of MoO 3 and Fe 2 O 3 in the Thermal Decomposition of Ammonium Perchlorate. Collection of Czechoslovak chemical communications, 59(10), 2253-2261.
[11]Horcajada, P., Surblé, S., Serre, C., Hong, D.-Y., Seo, Y.-K., Chang, J.-S., . . . Férey, G. (2007). Synthesis and catalytic properties of MIL-100 (Fe), an iron (III) carboxylate with large pores. Chemical Communications(27), 2820-2822.
[12]Shi, J., Hei, S., Liu, H., Fu, Y., Zhang, F., Zhong, Y., & Zhu, W. (2013). Synthesis of MIL-100 (Fe) at low temperature and atmospheric pressure. Journal of Chemistry, 2013.
[13]Lv, H., Zhao, H., Cao, T., Qian, L., Wang, Y., & Zhao, G. (2015). Efficient degradation of high concentration azo-dye wastewater by heterogeneous Fenton process with iron-based metal-organic framework. Journal of Molecular Catalysis A: Chemical, 400, 81-89.
[14]Wang, P., Zhao, H., Sun, H., Yu, H., & Quan, X. (2014). Porous metal–organic framework MIL-100 (Fe) as an efficient catalyst for the selective catalytic reduction of NO x with NH 3. Rsc Advances, 4(90), 48912-48919.
[15]Suh, M. P., Park, H. J., Prasad, T. K., & Lim, D.-W. (2012). Hydrogen storage in metal–organic frameworks. Chemical reviews, 112(2), 782-835.
[16]Wu, C.-Y., Chen, Y.-C., Wang, T.-H., Lin, C.-I., Huang, C.-W., & Zhou, S.-R. (2021). Effect of Fe-based organic metal framework on the thermal decomposition of potassium nitrate and its application to the composite solid propellants. Combustion and Flame, 232, 111556.
[17]Tang, J., & Wang, J. (2017). Fe-based metal organic framework/graphene oxide composite as an efficient catalyst for Fenton-like degradation of methyl orange. Rsc Advances, 7(80), 50829-50837.
[18]Bircumshaw, L., & Newman, B. H. (1954). The thermal decomposition of ammonium perchlorate-І. Introduction, experimental, analysis of gaseous products, and thermal decomposition experiments. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 227(1168), 115-132.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top