跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/30 02:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐翔澔
研究生(外文):Hsu, Hsiang-Hao
論文名稱:熱輻射對超音速高溫兩相衝擊流場影響之數值模擬分析
論文名稱(外文):Numerical Simulation of Thermal Radiation Influence on Supersonic and High-Temperature Two-Phase Impingement Flow
指導教授:江滄柳
指導教授(外文):Jiang, Tsung-Leo
口試委員:呂宗行吳庭瑞
口試委員(外文):Leu, Tzong-ShyngWu, Tin-Juei
口試日期:2021-07-26
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:173
中文關鍵詞:超音速衝擊流場兩相流熱傳分析輻射效應
外文關鍵詞:Supersonic impinging jetParticle-gas flowsHeat transfer analysisRadiation effect
相關次數:
  • 被引用被引用:1
  • 點閱點閱:89
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
由於垂直發射系統(VLS)改善了傾斜式發射器的眾多缺點,故成為現今各國最為廣泛使用的發射系統形式,雖說VLS相較於舊式發射系統具有許多優勢,但其所面臨到的技術挑戰也隨之而來,例如:發射時所產生的尾焰衝擊至擋板時的極高熱負荷,可能會造成周圍機構的壞損,故本研究將透過數值模擬的方式,針對衝擊壁面進行熱傳評估,以利未來熱防護材料的設計。
固態燃料推進器為了增加推力會在燃劑中添加鋁粉,而這些金屬粉末經燃燒後就會產生一定比例的氧化鋁顆粒,並隨著尾焰流場一同排出,造成衝擊壁面上的燒沖蝕效應,這些高溫氧化鋁顆粒除了會影響尾焰流場的速度及溫度外,由於其自身溫度較高的關係,預期這些顆粒所造成之輻射效應,對於尾焰流場的預測及壁面熱傳的評估會有相當的影響。故此,本研究利用相關文獻推估氣體及粒子相之等效輻射參數,以確保模擬結果的準確性,並且利用這些參數進行兩相衝擊流場的輻射效應評估,藉此探討輻射熱傳對於衝擊壁面的影響。
研究結果歸納成以下幾項重點,首先,針對喉部半徑6.61(mm)之小型固態燃料推進器進行分析,透過數值模擬探討有、無輻射效應對於衝擊壁面熱傳的影響,發現於壁面上之輻射熱傳量非常微小,僅佔總熱通量的4(%)左右,而主導熱通量趨勢的因素則為粒子的熱傳導,另外,當考慮輻射效應時,高溫尾焰氣體及粒子皆會因對外釋放輻射能,而造成兩者溫度的下降。由於粒子相的存在會主導整體熱輻射的傳遞,故針對粒子相的散射係數及質流量進行調整,以觀測參數之間所造成的差異性,發現當忽略粒子散射效應時,會造成壁面輻射熱傳的大幅提升,導致模擬結果的失真,這說明了粒子的散射會主導熱輻射的傳遞;而當下降粒子質流量時,會造成尾焰溫度的下降,且由於粒子數量的減少,導致粒子透過熱輻射傳遞至氣相流體的能量也明顯減少。在壁面邊界條件之影響分析中,使用固定壁溫條件時,能使艙體內的粒子保持較高的溫度,導致其艙體內之輻射能量較強,但同時也因為壁溫較高的關係,使得壁面輻射熱傳量反而較小。透過上述之分析,觀察到整體壁面輻射效應的影響皆相當微小,因此最後針對模型尺寸大小差異,進行輻射效應的重要性評估,結果顯示尺寸越大之模型其熱輻射傳遞之能量也越強,造成於壁面之輻射熱傳重要性也隨之提高。
Because the vertical launching system (VLS) has mitigated the many shortcomings of the guided missile launching system (GMLS), it has currently become the most widely used launching system in various countries. Although the VLS has many advantages over the GMLS, it also faces technical challenges. For example, the plume generated during launch and the extremely high thermal load when impinging on the plate may cause damage to the surrounding structures. Therefore, this study provides an evaluation of the heat transfer of the impinged wall through a numerical simulation, intending to facilitate the design of thermal protection materials in the future.
Aluminum powder is often added to propellant to increase the thrust. After these metal powders burn, a specific amount of alumina particles will be produced that is discharged along with the exhaust plume flow, causing ablation and erosion on the impinged wall. These high-temperature alumina particles affect the velocity and temperature of the plume flow. Due to their higher temperature, the radiation effect caused by these particles is expected to influence the prediction of the plume flow and the evaluation of the wall heat transfer. Therefore, in this study, relevant references are used to estimate the equivalent radiation parameters of the gas and particle phases to ensure the accuracy of the results. Then, these parameters are used to evaluate the effects of radiation on the two-phase impinging flow and explore the influence of radiative heat transfer on the impinged wall.
The research results can be summarized with the following key points: First, a subscale solid-propellant rocket with a throat radius of 6.61 (mm) was analyzed to explore the influence of radiation effects on the heat transfer of the impinged wall through the use of numerical simulations. The research results showed that the amount of radiative heat transfer was minimal, accounting for only about 4% of the total heat flux. The dominant factor in the heat flux was the heat conduction of the particles. In addition, radiation caused the high-temperature exhaust plume and alumina particles to be affected by the release of radiative energy, causing the temperatures of both to drop. Since the existence of the particle phase dominated the overall heat radiation transfer, the scattering coefficient and mass flow rate of the particle phase were adjusted to observe the differences caused by the parameters. Based on the results, when the particle scattering effect was ignored, the wall radiative heat transfer significantly increased, resulting in distortion of the simulation results, which indicated that the scattering of particles dominated the radiation heat transfer. When the mass flow rate of the particles was reduced, the exhaust plume's temperature dropped, and due to the ensuing reduction in the number of particles, the energy transferred from the particles to the plume gas through thermal radiation was also significantly reduced. In analyzing the influence of the wall boundary conditions, the particles in the chamber at a fixed wall temperature could be maintained at a higher temperature, resulting in more substantial radiation energy in the chamber. At the same time, because of the higher wall temperature, the amount of radiation heat transfer on the wall was also relatively small. The analysis showed that the influence of the overall wall radiation effect was relatively small. Therefore, the importance of the radiation effect was evaluated based on size differences in the model. The results showed that a larger model size led to more vital energy being transferred by the heat radiation, which increased the importance of the radiation heat transfer on the wall.
摘要 I
SUMMARY III
INTRODUCTION V
NUMERICAL MODEL VI
RESULTS AND DISCUSSION VIII
CONCLUSIONS XIV
REFERENCES XIV
致謝 XVI
目錄 XVII
表目錄 XX
圖目錄 XXI
符號索引 XXXII
第一章 序論 1
1.1 前言 1
1.2 文獻回顧 4
1.3 研究動機與目的 53
第二章 數學與物理模型 55
2.1 基本假設 56
2.2 連續相之統御方程式 56
2.3 離散相之統御方程式 59
2.4 流固耦合熱傳模型 63
2.5 輻射模型 65
2.6 紊流模型 68
2.7 邊牆函數 72
第三章 數值方法 76
3.1 控制體積轉換之傳輸方程式 77
3.2 壓力耦合半隱式演算法 77
3.3 二階上風法 79
3.4 離散相之計算流程 79
3.5 鬆弛因子 80
3.6 收斂標準 81
第四章 結果與討論 83
4.1 模擬模型之設置 84
4.2 流場模型及邊界條件 85
4.3 收斂標準之設定 92
4.4 流場輻射參數之設定 96
4.5 輻射效應之比對分析 101
4.6 散射效應之影響 118
4.7 衝擊壁面邊界條件之影響 127
4.8 粒子質流量之影響 137
4.9 尺寸差異之影響分析 156
第五章 結論與未來工作 164
5.1 結論 164
5.2 未來工作 168
參考文獻 170
【1】https://www.seaforces.org/wpnsys/SURFACE/Mk-13-missile-launcher.htm
【2】https://www.seaforces.org/wpnsys/SURFACE/Mk-41-missile-launcher.htm
【3】https://www.researchgate.net/figure/Plume-shock-structure-of-underexpanded-and-overexpanded-supersonic-jets-A1-Schematic_fig1_240488458
【4】徐文奇, “垂直發射裝置中燃氣兩相衝擊流場數值研究” , 哈爾濱工程大學航天工程系碩士論文, 2007.
【5】Lee K. S, Hong S. K., “Supersonic Jet Impingement Navier-Stokes Computations for Vertical Launching System Design Applications”, Journal of Spacecraft and Rockets, Vol.41, No.5, October 2004.
【6】Nobuyuki T., A. Koichi H., Toshi F, Kazuo A., Masaru k., “Numerical Simulation of a Supersonic Jet Impingement on a Ground”, Journal of Aerospace, Vol. 100, Section 1, pp. 2168-2180, 1991.
【7】陳韋丞, “超音速高溫氣體衝擊擋板之數值模擬分析”, 成功大學航空太空工程學系碩士論文,2019.
【8】Menter F. R., “Two Equation Eddy Viscosity Turbulence Models for Engineering Applications”, AIAA Journal, Vol. 32, No. 8, pp.1598-1605, 1994.
【9】宋緯倫, “不同紊流模式對超音速流場數值模擬結果之影響”, 成功大學航空太空工程學系碩士論文, 2010.
【10】郭忠義, “超音速高溫兩相流衝擊流場之模擬分析”, 成功大學航空太空工程學系碩士論文,2020.
【11】Troyes J., Dubois I., Borie V., Boischot A., “Multi-phase Reactive Numerical Simulations of a Model Solid Rocket Motor Exhaust Jet”, 42nd AIAA/ASME/SAE/ ASEE Joint Propulsion Conference, July 2006.
【12】Ma Y.J., Bao F.T., Xu H., Sun L., “Numerical Simulation of Solid Propellant Rocket Exhaust Plume Considering Two-Phase Flow Effects”, Applied Mechanics and Materials, Vol. 798, pp 185-189, October 2015.
【13】Binauld Q., “Numerical Simulation of Radiation in High Altitude Solid Propellant Rocket Plumes”, 7th EUCASS Advances in Aerospace Sciences, June 2017.
【14】Li Z., Wang N., Shi B., Li S., Yang R., “Effects of Particle Size on Two-Phase Flow Loss in Aluminized Solid Rocket Motors”, Acta Astronautic 159, pp.33-40,2019.
【15】林章裕, 林文山, 謝啟訓, “固態燃料推進器尾焰對於銅板之沖蝕試驗及熱傳模擬”, 中華民國第27屆燃燒與能源學術研討會,論文編號016, April 2017.
【16】Wang W., Li S., Zhang Q., Wang N., “Infrared Radiation Signature of Exhaust Plume from Solid Propellants with Different Energy Characteristics”, Chinese Journal of Aeronautic, Volume 26, Issue 3, pp.594-600, June 2013.
【17】Jung J., Brewster M. Q., “Radiative Heat Transfer Analysis with Molten Al_2 O_3 Dispersion in Solid Rocket Motors”, journal of spacecraft and rockets, September – October 2008.
【18】Ko J., Lee E., Kwon S., “Influence of Optical Properties of Alumina Particles on the Radiative Base Heating from Solid Rocket Plume”, Advances in Space Research 64, pp.514-526, May 2019.
【19】Zhang X., Chen H., “Numerical Study on Similarity of Plume Infrared Radiation between Reduced-Scale Solid Rocket Motors”, Chinese Journal of Aeronautic, Volume 29, Issue 4, pp.924-933, August 2016.
【20】https://history.nasa.gov/SP-4103/app-f.htm
【21】https://wemp.app/posts/7ab6bb75-ece1-4d72-a433-ee4fe5bf0e0a
【22】楊成麥, “噴霧模式之參數對液態燃料注入超音速流場數值模擬分析影響之研究”, 成功大學航空太空工程學系碩士論文, 2019.
【23】York B. J., Sinha N., Dash S. M., Anderson L., Gominho L., Koo J. H., Cheung F.B., “Steady/Transient Plume-Launcher Interactions and Progress Towards Particulate/Surface Layer Modeling”, 33^rdAerospace Sciences Meeting and Exhibit, January 1995.
【24】Marigliani L., “Numerical Analysis of Solid Rocket Motor Plume Radiative Heat Transfer at Low Altitude”, Master Thesis, Politecnico Di Milano, 2016.
【25】Ansys Fluent 15.0 theory guide
【26】https://www.academia.edu/3196299/ANSYS_Fluent_-Heat_Transfer_Modeling
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top