跳到主要內容

臺灣博碩士論文加值系統

(100.28.231.85) 您好!臺灣時間:2024/11/06 15:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳唯超
研究生(外文):Chen, Wei-Chao
論文名稱:超音速高溫兩相衝擊流對擋板熱傳效應之數值模擬分析
論文名稱(外文):Numerical Simulation of the Heat Transfer of Supersonic High- Temperature Two-Phase Impinging Flow to a Flat Plate
指導教授:江滄柳
指導教授(外文):Jiang, Tsung-Leo
口試委員:吳庭瑞呂宗行
口試委員(外文):WU, TING-RUEILYU, ZONG-SING
口試日期:2021-07-26
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:107
中文關鍵詞:固態燃料推進器之尾焰衝擊射流流固耦合數值模擬
外文關鍵詞:Solid propellant rocket exhaust plumeImpingement flowFluid-solid couplingNumerical simulation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:114
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
由於固態火箭之尾焰中含有相當大比例的固態或液態氧化鋁顆粒,此帶有顆粒的尾焰對於衝擊擋板除了高溫的熱燒蝕效應外還有粒子的沖蝕效應,故在數值模擬分析中必須考慮顆粒相之影響以符合真實情況。因此本研究透過相關文獻以驗證兩相流模型之可靠性,並且利用完成驗證之兩相流模式進行兩相衝擊流場之模擬分析,藉此探討超音速高溫兩相流對擋板的熱傳效應。首先,本研究探討固態火箭尾焰氣體的成分,針對氣體比熱隨溫度變化之特性與假設比熱為常數對流場的預測影響進行比對,得知隨溫度改變之比熱在高溫區的比熱大於常數,而較大比熱的氣體溫度不容易上升,因此與粒子之間的溫差較大,導致氣體能吸收更多粒子相的能量;粒子溫度下降之後,由液膜所主導的熱通量降低,銅板的升溫效應較緩和。接下來,粒子相分別以假設單一粒徑以及實際一組多粒徑進行比較,得出經過相同時間內,以單一粒徑計算模擬之銅板表面溫度峰值較高,而以多粒徑計算模擬的銅板表面中心處較高溫。接著當考慮銅板與噴嘴出口之距離後,流場結構受艙體壓力影響,導致衝擊壁面上隨時間變化之熱通量依衝擊距離增加而減少,主因是衝擊距離增加,粒子與氣體之間的熱交換時間因此也增加,粒子溫度因而降低,傳導至壁面之熱通量隨之下降。而衝擊距離的不同連帶影響流場膨脹、壓縮的發展,撞擊至壁面前的馬赫盤結構又與迴流區內的液膜溫度與分佈有關,更影響銅板表面的溫度分佈。
To match the actual situation, the influence of particle phase must be considered in the numerical simulation because the plume of solid-propellant rocket contains a large proportion of solid or liquid alumina particles. Moreover, the plume with alumina particles has a particle erosion effect on the impact wall along with the thermal ablation effect at high temperature. Therefore, in this study, we discuss the gas composition of the plume of the solid-propellant rocket and compare the predicted influence of the difference in gas specific heat on the flow using two specific heat conditions. The first condition is that the specific heat changes with temperature, whereas the second condition is that specific heat is assumed to be constant. It is known that the gas specific heat of the first condition is greater than that of the second condition in the high-temperature region. As the gas temperature with a larger specific heat would rise less easily, the temperature difference between the particles and gas would be larger for the first condition. As a result, more energy of the particle phase is absorbed by the gas, resulting in lower-temperature particles. The heat flux through the wall film to the copper plate is reduced, and the heating effect of the copper plate is relatively mild. Next, the flow impinging onto copper plates was simulated under two particle phase conditions. The first group had a single particle size, whereas the second group had multiple particle sizes. After the same duration of time had passed, it was found that the peak value of the copper plate surface temperature simulated with a single particle size was higher, while the center of the copper plate surface simulated with multiple particle sizes was higher. When considering the distance between the copper plate and nozzle outlet, the heat flux on the impact wall decreased with the increase in the impact distance. This is because the time of interaction with the gas phase is different when the particles leave the nozzle outlet and impact the wall, and the different impact distance affects the development of flow expansion and compression. The Mach disc structure in front of the wall is related to the temperature distribution of the liquid film in the recirculation zone, which also affects the temperature distribution on the surface of the copper plate.
摘要 I
SUMMARY III
INTRODUCTION V
NUMERICAL MODEL AND THEORY VI
RESULTS AND DISCUSSION VIII
CONCLUTIONS XV
REFERENCES XV
致謝 XVI
目錄 XVII
表目錄 XIX
圖目錄 XX
符號索引 XXVII
第一章 導論 1
1.1 前言 1
1.2 文獻回顧 3
1.3 研究動機與目的 34
第二章 數學與物理模型 36
2.1 基本假設 36
2.2 連續相之統御方程式 37
2.3 離散相之統御方程式 41
2.4 紊流模型 44
2.5 邊牆函數 47
2.6 流固耦合 50
第三章 數值方法 54
3.1 控制體積轉換之傳輸方程式 55
3.2 壓力耦合半隱式演算法 56
3.3 二階上風法 58
3.4 離散相計算過程 59
3.5 鬆弛因子 60
第四章 結果與討論 62
4.1 超音速兩相衝擊流流固耦合模型建立 63
4.2 多種粒子直徑大小之比對分析 74
4.3 改變噴嘴至衝擊擋板之距離對熱通量之影響 92
第五章 結論與未來工作 101
5.1 結論 101
5.2 未來工作 103
參考文獻 105
【1】https://en.wikipedia.org/wiki/Ballistic_missile
【2】http://www.mdc.idv.tw/mdc/navy/usanavy/E-antiair-Missle-
Luancher.htm
【3】https://commons.wikimedia.org/w/index.php?curid=2001779
【4】Sutton G.P., Biblarz O. (2001), Rocket Propulsion Elements (7th
Edition), New York:John Wiley & Sons, Inc.
【5】徐文奇, “垂直發射裝置中燃氣兩相衝擊流場數值研究”, 哈爾
濱工程大學航天工程系碩士論文, 2007.
【6】Lee K. S, Hong S. K., “Supersonic Jet Impingement Navier-Stokes Computations for Vertical Launching System Design Applications”, Journal of Spacecraft and Rockets, Vol.41, No.5, October 2004.
【7】Nobuyuki T., A. Koichi H., Toshi F., Kazuo A., Masaru K., “Numerical Simulation of a Supersonic Jet Impingement on a Ground”, Journal of Aerospace, Vol. 100, Section 1, pp. 2168-2180, 1991.
【8】Gojon R., Bogey C., Marsden O., “Large-Eddy Simulation of Supersonic Planar Jets Impinging on a Flat Plate at an Angle of 60 to 90 Degrees”, 21st AIAA/CEAS Aeroacoustics Conference, June 2015.
【9】陳韋丞, “超音速高溫氣體衝擊擋板之數值模擬分析”, 成功大
學航空太空工程學系碩士論文,2019.
【10】Menter F. R., “Two Equation Eddy Viscosity Turbulence Models for Engineering Applications”, AIAA Journal, Vol. 32, No. 8, pp.1598-1605, 1994.
【11】宋緯倫, “不同紊流模式對超音速流場數值模擬結果之影響”,
成功大學航空太空工程學系碩士論文, 2010.
【12】郭忠義, “超音速高溫兩相流衝擊流場之模擬分析”, 成功大學航空太空工程學系碩士論文, 2020
【13】York B. J., Sinha N., Dash S. M., Anderson L., Gominho L., Koo J.H., Cheung F. B., “Steady/Transient Plume-Launcher Interactions and Progress Towards Particulate/Surface Layer Modeling”, 33rd Aerospace Sciences Meeting and Exhibit, January 1995.
【14】Troyes J., Dubois I., Borie V., Boischot A., “Multi-phase Reactive Numerical Simulations of a Model Solid Rocket Motor Exhaust Jet”, 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, July 2006.
【15】Ma Y.J., Bao F.T., Xu H., Sun L., “Numerical Simulation of Solid Propellant Rocket Exhaust Plume Considering Two-Phase Flow Effects”, Applied Mechanics and Materials, Vol. 798, pp 185-189, October 2015.
【16】Feng S., Nie W., Xie Q., Duan L., “Numerical Simulation of Flow Field and Radiation of an Aluminized Solid-Propellant Rocket Multiphase Exhaust Plume”, 39th AIAA Thermophysics Conference, June 2007.
【17】Li Z., Wang N., Shi B., Li S., Yang R., “Effects of Particle Size on Two-Phase Flow Loss in Aluminized Solid Rocket Motors”, Acta Astronautic 159, pp.33-40,2019.
【18】Parker R. R., Klausner J.F., Mei R., “Supersonic Two-Phase Impinging Jet Heat Transfer”, Journal of Heat Transfer, Vol.135, Issue 2, pp.647-655, December 2012.
【19】林章裕, 林文山, 謝啟訓, “固態燃料推進器尾焰對於銅板之沖蝕試驗及熱傳模擬”, 中華民國第27屆燃燒與能源學術研討會, 論文編號016, April 2017.
【20】https://www.fangzhenxiuxiu.com/post/691478
【21】楊成麥, “噴霧模式之參數對液態燃料注入超音速流場數值模
擬分析影響之研究”, 成功大學航空太空工程學系碩士論文, 2019.
【22】http://www.wsbookshow.com/uploads/bookfile/201201/9787508492308_1.pdf
【23】ANSYS FLUENT 19.0 theory guide, ANSYS Inc.,2019
【24】Burak S., Caner Ekin Kiper, Bülent S., “Experimental and Numerical Investigation of Aluminum Particle Combustion in Solid Rocket Combustion Chambers”, 8th EUROPEAN CONFERENCE FOR AERONAUTICS AND AEROSPACE SCIENCES (EUCASS),2019
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊