|
Agrawal, A. (2016). Clickbait Detection Using Deep Learning. Paper presented at the 2016 2nd International Conference on Next Generation Computing Technologies (NGCT), Dehradun, India. Anand, A., Chakraborty, T., & Park, N. (2017). We Used Neural Networks to Detect Clickbaits: You Won’t Believe What Happened Next! Paper presented at the European Conference on Information Retrieval, ECIR 2017 - Aberdeen, United Kingdom. Bahdanau, D., Cho, K. H., & Bengio, Y. (2014). Neural Machine Translation by Jointly Learning to Align and Translate. Paper presented at the arXiv preprint arXiv:1409.0473. Biyani, P., Tsioutsiouliklis, K., & Blackmer, J. (2016). " 8 Amazing Secrets for Getting More Clicks": Detecting Clickbaits in News Streams Using Article Informality. Paper presented at the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, Arizona. Chakraborty, A., Paranjape, B., Kakarla, S., & Ganguly, N. (2016). Stop Clickbait: Detecting and Preventing Clickbaits in Online News Media. Paper presented at the Proceedings of the 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, Davis, California. Chen, Y., Conroy, N. J., & Rubin, V. L. (2015). Misleading Online Content: Recognizing Clickbait as False News. Paper presented at the Proceedings of the 2015 ACM on Workshop on Multimodal Deception Detection, Seattle, Washington, USA. Chung, J., Gulcehre, C., Cho, K. H., & Bengio, Y. (2014). Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. Paper presented at the arXiv preprint arXiv:1412.3555. Cohen, J. (1960). A Coefficient of Agreement for Nominal Scales. Educational and psychological measurement, 20(1), 37-46. Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). Bert: Pre-Training of Deep Bidirectional Transformers for Language Understanding. Paper presented at the Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, Minnesota. Dong, M., Yao, L., Wang, X., Benatallah, B., & Huang, C. (2019). Similarity-Aware Deep Attentive Model for Clickbait Detection. Paper presented at the Advances in Knowledge Discovery and Data Mining, Cham. Fetterly, D., Manasse, M., & Najork, M. (2004). Spam, Damn Spam, and Statistics: Using Statistical Analysis to Locate Spam Web Pages. Paper presented at the Proceedings of the 7th International Workshop on the Web and Databases: colocated with ACM SIGMOD/PODS 2004, Paris, France. Fu, J., Liang, L., Zhou, X., & Zheng, J. (2017). A Convolutional Neural Network for Clickbait Detection. Paper presented at the 2017 4th International Conference on Information Science and Control Engineering (ICISCE), Changsha, China. Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural computation, 9(8), 1735-1780. Jain, A. K., Mao, J., & Mohiuddin, K. M. (1996). Artificial Neural Networks: A Tutorial. Computer, 29(3), 31-44. Jawahar, G., Sagot, B., & Seddah, D. (2019). What Does Bert Learn About the Structure of Language? Paper presented at the ACL 2019-57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy. Jin, D., Jin, Z., Tianyi Zhou, J., & Szolovits, P. (2019). Is Bert Really Robust? A Strong Baseline for Natural Language Attack on Text Classification and Entailment. Paper presented at the arXiv. Kaur, S., Kumar, P., & Kumaraguru, P. (2020). Detecting Clickbaits Using Two-Phase Hybrid Cnn-Lstm Biterm Model. Expert Systems with Applications, 151, 113350. Kim, Y. (2014). Convolutional Neural Networks for Sentence Classification. Paper presented at the arXiv preprint arXiv:1408.5882. Kumar, V., Khattar, D., Gairola, S., Kumar Lal, Y., & Varma, V. (2018). Identifying Clickbait: A Multi-Strategy Approach Using Neural Networks. Paper presented at the The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, Ann Arbor, MI, USA. Landis, J. R., & Koch, G. G. (1977). The Measurement of Observer Agreement for Categorical Data. biometrics, 159-174. Levy, O., Goldberg, Y., & Dagan, I. (2015). Improving Distributional Similarity with Lessons Learned from Word Embeddings. Transactions of the Association for Computational Linguistics, 3, 211-225. Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., & Alsaadi, F. E. (2017). A Survey of Deep Neural Network Architectures and Their Applications. Neurocomputing, 234, 11-26. Manjesh, S., Kanakagiri, T., Vaishak, P., Chettiar, V., & Shobha, G. (2017). Clickbait Pattern Detection and Classification of News Headlines Using Natural Language Processing. Paper presented at the 2017 2nd International Conference on Computational Systems and Information Technology for Sustainable Solution (CSITSS), Bengaluru, India. Mark, G. (2014). Click Bait Is a Distracting Affront to Our Focus. nytimes. com/roomfordebate/2014/11/24/you-wont-believe-whatthese-people-say-about-click-bait/click-bait-is-a-distracting-affrontto-our-focus. Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient Estimation of Word Representations in Vector Space. Paper presented at the arXiv preprint arXiv:1301.3781. Morchid, M. (2018). Parsimonious Memory Unit for Recurrent Neural Networks with Application to Natural Language Processing. Neurocomputing, 314, 48-64. Naili, M., Chaibi, A. H., & Ghezala, H. H. B. (2017). Comparative Study of Word Embedding Methods in Topic Segmentation. Procedia computer science, 112, 340-349. Nematzadeh, A., Meylan, S. C., & Griffiths, T. (2017). Evaluating Vector-Space Models of Word Representation, or, the Unreasonable Effectiveness of Counting Words near Other Words. Cognitive Science. Newman, N., Fletcher, R., Kalogeropoulos, A., Levy, D., & Nielsen, R. K. (2018). Reuters Institute Digital News Report 2018. Newman, N., Fletcher, R., Schulz, A., Andi, S., & Nielsen, R. (2020). Reuters Institute Digital News Report 2020 Reuter Institute for the Study of Journalism. Pennington, J., Socher, R., & Manning, C. (2014). Glove: Global Vectors for Word Representation. Paper presented at the Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), Doha, Qatar. Potthast, M., Gollub, T., Komlossy, K., Schuster, S., Wiegmann, M., Fernandez, E. P. G., . . . Stein, B. (2018). Crowdsourcing a Large Corpus of Clickbait on Twitter. Paper presented at the Proceedings of the 27th International Conference on Computational Linguistics, Santa Fe, New Mexico, USA. Potthast, M., Köpsel, S., Stein, B., & Hagen, M. (2016). Clickbait Detection. Paper presented at the European Conference on Information Retrieval, Cham. Pujahari, A., & Sisodia, D. S. (2019). Clickbait Detection Using Multiple Categorisation Techniques. Journal of Information Science, 0165551519871822. Sun, C., Qiu, X., Xu, Y., & Huang, X. (2019). How to Fine-Tune Bert for Text Classification? Paper presented at the China National Conference on Chinese Computational Linguistics, Cham. Sun, Y., Wang, S., Li, Y., Feng, S., Chen, X., Zhang, H., . . . Wu, H. (2019). Ernie: Enhanced Representation through Knowledge Integration. Paper presented at the arXiv preprint arXiv:1904.09223. Tarwani, K. M., & Edem, S. (2017). Survey on Recurrent Neural Network in Natural Language Processing. International Journal of Engineering Trends and Technology, 48(6), 301-304. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., . . . Polosukhin, I. (2017). Attention Is All You Need. Paper presented at the Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, California, USA. Yi, R., & Hu, W. (2019). Pre-Trained Bert-Gru Model for Relation Extraction. Paper presented at the Proceedings of the 2019 8th International Conference on Computing and Pattern Recognition, Beijing, China. Zhang, W., Du, W., Bian, Y., Peng, C.-H., & Jiang, Q. (2020). Seeing Is Not Always Believing: An Exploratory Study of Clickbait in Wechat. Internet Research. Zheng, H. T., Chen, J. Y., Yao, X., Sangaiah, A., Jiang, Y., & Zhao, C. Z. (2018). Clickbait Convolutional Neural Network. Symmetry, 10(5), 138. Zheng, H. T., Yao, X., Jiang, Y., Xia, S. T., & Xiao, X. (2017). Boost Clickbait Detection Based on User Behavior Analysis. Paper presented at the Asia-Pacific Web (APWeb) and Web-Age Information Management (WAIM) Joint Conference on Web and Big Data, Cham. Zhou, Y. (2017). Clickbait Detection in Tweets Using Self-Attentive Network. Paper presented at the arXiv preprint arXiv:1710.05364. Zuhroh, N. A., & Rakhmawati, N. A. (2020). Clickbait Detection: A Literature Review of the Methods Used. Register: Jurnal Ilmiah Teknologi Sistem Informasi, 6(1), 1-10.
|