丁雲源(2005)。白蝦養殖發展史。水產試驗所特刊第6號,3-4。
台灣趨勢研究(2019)。台灣智慧農業現況與需求:水產養殖業篇。取自http://www.twtrend.com/share_cont.php?id=73
行政院農業委員會漁業署(2019)。民國104年(2015)漁業統計年報。取自https://www.fa.gov.tw/cht/index.aspx
行政院農業委員會漁業署(2019)。民國105年(2016)漁業統計年報。取自https://www.fa.gov.tw/cht/index.aspx
行政院農業委員會漁業署(2020)。民國106年(2017)漁業統計年報。取自https://www.fa.gov.tw/cht/index.aspx
行政院農業委員會漁業署(2020)。民國107年(2018)漁業統計年報。取自https://www.fa.gov.tw/cht/index.aspx
行政院農業委員會漁業署(2020)。民國108年(2019)漁業統計年報。取自https://www.fa.gov.tw/cht/index.aspx
行政院農業委員會(2020)。養殖水產類-甲殼類臺灣良好農業規範(TGAP)。產銷履歷農產品資訊網。取自https://taft.coa.gov.tw/lp.asp?ctNode=276&CtUnit=80&BaseDSD=7&role=C
周信佑(2018)。我國水產養殖轉型發展新契機。農業科技決策資訊平台。取自https://agritech-foresight.atri.org.tw/article/contents/1619
郭仁杰(2005)。台灣白蝦養殖產業現況。水產試驗所特刊第6號,9-17。
陳獻(2005)。白蝦養殖工廠化企業管理。水產試驗所特刊第6號,167-174。
陳心瑜(2019)。探討水產養殖業應用區塊鏈之商業模式—以台灣鯛養殖為例。國立成功大學工業與資訊管理研究所碩士論文。 陳煦森、鄭金華、陳紫媖(2014)。環境因子對蝦類行為生態的影響。水試專訓,47,24-27。
楊金城(2018年6月1日)投資4億!全台最大漁電共生室內養殖場今啟用。自由時報。取自https://www.ltn.com.tw/
楊明樺、鄭金華、陳紫媖(2019)。白蝦生物安全繁養殖,有效提高育成率。農政視野,330,26-31。
薛月順(2010)。臺灣「草蝦王國」的形成(1968-1988)—政府與民間扮演的角色。國史館館刊,24,139-176。
Akyol, O., Özgül, A., Düzbastılar, F. O., Şen, H., Urbina, J. M. O. d., & Ceyhan, T. (2020). Influence of some physico-chemical variables on wild fish richness beneath sea-cage fish farms in the Aegean Sea, Turkey. Journal of the Marine Biological Association of the United Kingdom, 100(7), 1171-1179.
Badii, C., Bilotta, S., Cenni, D., Difino, A., Nesi, P., Paoli, I., & Paolucci, M. (2020). High Density Real-Time Air Quality Derived Services from IoT Networks. Sensors, 20(18), 5435.
Bradley, D., Merrifield, M., Miller, K. M., Lomonico, S., Wilson, J. R., & Gleason, M. G. (2019). Opportunities to improve fisheries management through innovative technology and advanced data systems. Fish and Fisheries, 20(3), 564-583.
Burke, M., Grant, J., Filgueira, R., & Stone, T. (2021). Oceanographic processes control dissolved oxygen variability at a commercial Atlantic salmon farm Application of a real-time sensor network. Aquaculture, 533, 736143.
Cao, W., Huan, J., Liu, C., Qin, Y., & Wu, F. (2019). A combined model of dissolved oxygen prediction in the pond based on multiple-factor analysis and multi-scale feature extraction. Aquacultural Engineering, 84, 50-59.
Cao, X., Liu, Y., Wang, J., Liu, C., & Duan, D. (2020). Prediction of dissolved oxygen in pond culture water based on K-means clustering and gated recurrent unit neural network. Aquacultural Engineering, 91, 102122.
Chiang, C.-T., Chen, T.-Y., & Wu, Y.-T. (2020). Design of a Water Salinity Difference Detector for Monitoring Instantaneous Salinity Changes in Aquaculture. IEEE Sensors Journal, 20(6), 3242-3248.
FAO. (2020). The State of World Fisheries and Aquaculture 2020. Retrieved December 7, 2020 from http://www.fao.org/documents/card/en/c/ca9229en.
Francisti, J., Balogh, Z., Reichel, J., Magdin, M., Koprda, Š., & Molnár, G. (2020). Application Experiences Using IoT Devices in Education. Applied Sciences, 10(20), 7286.
Gooijer, J. G. D., & Hyndman, R. J. (2006). 25 years of time series forecasting. International Journal of Forecasting, 22(3), 443-473.
Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735-1780.
Huan, J., Li, H., Li, M., & Chen, B. (2020). Prediction of dissolved oxygen in aquaculture based on gradient boosting decision tree and long short-term memory network: A study of Chang Zhou fishery demonstration base, China. Computers and Electronics in Agriculture, 175, 105530.
Huan, J., Li, H., Wu, F., & Cao, W. (2020). Design of water quality monitoring system for aquaculture ponds based on NB-IoT. Aquacultural Engineering, 90, 102088.
Jiang, H., Chen, X., Bian, W., Fu, L., Qin, Q., Zhong, L., & Wang, M. (2020). Comparison of bacterial communities in channel catfish Ictalurus punctatus culture ponds of an industrial ecological purification recirculating aquaculture system. Aquaculture Research, 51(6), 2432-2442.
Kautsky, N., Ronnback, P., Tedengren, M., & Troell, M. (2000). Ecosystem perspectives on management of disease in shrimp pond farming. Aquaculture, 191(1-3), 145-161.
Lai, H.-C., Ng, T. H., Ando, M., Lee, C.-T., Chen, I-T., Chuang, J.-C., Mavichak, R., Chang, S.-H., Yeh, M.-D., Chiang, Y.-A., Takeyama, H., Hamaguchi, H.-o, Lo, C.-F., Aoki, T., & Wang, H.-C. (2015). Pathogenesis of acute hepatopancreatic necrosis disease (AHPND) in shrimp. Fish & Shellfish Immunology, 47(2), 1006-1014.
LeCun,, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521, 436-444.
Lee, C., & Wang, Y.-J. (2020). Development of a cloud-based IoT monitoring system for Fish metabolism and activity in aquaponics. Aquaculture Engineering, 90, 102067.
Leff, A., & Rayfield, J. T. (2001, September). Web-application development using the model/view/controller design pattern. Paper presented at the Proceedings Fifth IEEE International Enterprise Distributed Object Computing Conference, Seattle.
Lin, C., & Lin, Yihsu. (2007). A cooperative inventory policy with deteriorating items for a two-echelon model. European Journal of Operational Research, 178(1), 92-111.
Lin, S.-J., Chen, Y.-F., Hsu, K.-C., Chen, Y.-L., Ko, T.-P., Lo, C.-F., Wang, H.-C., & Wang, H.-C. (2019). Structural Insights to the Heterotetrameric Interaction between the Vibrio parahaemolyticus PirAvp and PirBvp Toxins and Activation of the Cry-Like Pore-Forming Domain. Toxins, 11(4), 233.
Liu, G., & Guo, J. (2019). Bidirectional LSTM with attention mechanism and convolutional layer for text classification. Neurocomputing, 337, 325-338.
Liu, H.-P., Chuang, Y.-M., Liu, C.-H., Yang, P. C., & Fuh, C.-S. (2021). Precise Measurement of Physical Activities and High-Impact Motion: Feasibility of Smart Activity Sensor System. IEEE Sensors Journal, 21(1), 568-580.
Liu, Y., Zhang, Q., Song, L., & Chen, Y. (2019). Attention-based recurrent neural networks for accurate short-term and long-term dissolved oxygen prediction. Computers and Electronics in Agriculture, 165, 104964.
Moura, P. S. D., Wasielesky, W. J., Serra, F. D. P., Braga, A., & Poersch, L. (2021). Partial seawater inclusion to improve Litopenaeus vannamei performance in low salinity biofloc systems. Aquaculture, 531, 735905.
Sagheer, A., & Kotb, M. (2019). Time series forecasting of petroleum production using deep LSTM recurrent networks. Neurocomputing, 323, 203-213.
Sengupta, S., Basak, S., Saikiab, P., Paul, S., Tsalavoutis, V., Atiah, F., Ravi, V., & Peters, A. (2020). A review of deep learning with special emphasis on architectures, applications and recent trends. Knowledge-Based Systems, 194, 105596.
Sezer, O. B., Gudelek, M. U. & Ozbayoglu, A. M. (2020). Financial time series forecasting with deep learning : A systematic literature review: 2005-2019. Applied Soft Computing Journal, 90, 106181.
Tacon, A. G. J., & Metian, M. (2013). Fish Matters: Importance of Aquatic Foods in Human Nutrition and Global Food Supply. Fisheries Science, 21(1), 22-38.
WHO. (2018). Air pollution and child health: prescribing clean air. Retrieved January 12, 2021 from https://www.who.int/publications/i/item/air-pollution-and-child-health.
Wirth, R. & Hipp, J. (2000). CRISP-DM: Towards a standard process model for data mining. Proceedings of the Fourth International Conference on the Practical Application of Knowledge Discovery and Data Mining, Manchester, United Kingdom, 29-39.
Xing, Y.-F., Xu, Y.-H. Shi, M.-H., & Lian, Y.-X. (2016). The impact of PM2.5 on the human respiratory system. Journal of Thoracic Disease, 8(1), E69-E74.
Yang , X., Zhang, S., Liu, J., Gao, Q., Dong, S., & Zhou, C. (2020). Deep learning for smart fish farming: applications, opportunities and challenges. Reviews in aquaculture, 13(1), 66-90.
Yu, Q., Xie, J., Huang, M., Chen, C., Qian, D., Qin, J. G., Chen, L., Jia, Y., & Li, E. (2020). Growth and health responses to a long-term pH stress in Pacific white shrimp Litopenaeus vannamei. Aquaculture Reports, 16, 100280.
Yu, Y., Si, Y., Hu, C., & Zhang, J. (2019). A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures. Neural Computation, 31(7), 1235-1270.
Zhao , R., Yan, R., Chen, Z., Mao, K., Wang, P., & Gao, R. X. (2019). Deep learning and its applications to machine health monitoring. Mechanical Systems and Signal Processing, 115, 213-237.