|
[1] R. Bez, E. Camerlenghi, A. Modelli and A. Visconti, “Introduction to flash memory,” in Proceedings of the IEEE, vol. 91, no. 4, pp. 489-502, April 2003, doi: 10.1109/JPROC.2003.811702. [2] M. Yu, Y. Cai, Z. Wang, Y. Fang, Y. Liu, Z. Yu, Y. Pan, Z. Zhang, J. Tan, X. Yang, M. Li and R. Huang, “Novel vertical 3D structure of TaOx-based RRAM with self-localized switching region by sidewall electrode oxidation.” Scientific Reports, vol. 6, no. 1, 2016, doi:10.1038/srep21020. [3] R. Waser, R. Dittmann, G. Staikov, and K. Szot, “Redox-based resistive switching memories –nanoionic mechanisms, prospects, and challenges.” Advanced Materials, vol. 21, no. 25-26, 2009, pp. 2632–2663, doi:10.1002/adma.200900375. [4] P. Wong, H. Y. Lee, S. Yu, Y. S. Chen, Y. Wu, P. S. Chen, B. Lee, Frederick T. Chen, and M. Tsai, “Metal–oxide RRAM,” Proceedings of the IEEE, vol. 100, no. 6, pp. 1951-1970, June 2012, doi: 10.1109/JPROC.2012.2190369. [5] Y. He, G. Ma , H. Cai, C. Liu, Q. Chen, A. Chen, H. Wang, and T. C. Chang, “Interconversion between bipolar and complementary behavior in nanoscale resistive switching devices,” IEEE Transactions on Electron Devices, vol. 66, no. 1, pp. 619-624, Jan. 2019, doi: 10.1109/TED.2018.2882652. [6] J. Joshua Yang, D. B. Strukov and D. R. Stewart, “Memristive devices for computing,” Nature Nanotech 8, pp. 13–24, 2013, doi: 10.1038 [7] R. Waser, “Resistive non-volatile memory devices (Invited Paper),” Microelectronic Engineering, vol. 86, no. 7-9, pp. 1925-1928, Mar. 2009, doi: 10.1016/j.mee.2009.03.132. [8] E. Pérez, Ó. González Ossorio, S. Dueñas, H. Castán, H. García, and C. Wenger, “Programming pulse width assessment for reliable and low-energy endurance performance in Al:HfO2-Based RRAM arrays,” Electronics, vol. 9, no. 5, p. 864, 2020, doi: 10.3390/electronics9050864 [9] C. Giovinazzo, J. Sandrini, E. Shahrabi, O. T. Celik, Y. Leblebici, and C. Ricciardi, “Analog control of retainable resistance multistates in HfO2 resistive-switching random access memories (ReRAMs),” ACS Applied Electronic Materials, vol. 1, no. 6, pp. 900–909, 2019, doi: 10.1021/acsaelm.9b00094 [10] Z. Chen, F. Zhang, B. Chen, Y. Zheng, B. Gao, L. Liu, X. Liu, and J. Kang, “High-performance HfOx /AlOy -based resistive switching memory cross-point array fabricated by atomic layer deposition,” Nanoscale Research Letters, vol. 10, no. 1, 2015, doi:10.1186/s11671-015-0738-1 [11] S. Roy, G. Niu, Q. Wang, Y. Wang, Y. Zhang, H. Wu, S. Zhai, P. Shi, S. Song, Z. Song, Z.-G. Ye, C. Wenger, T. Schroeder, Y.-H. Xie, X. Meng, W. Luo, and W. Ren, “Toward a reliable synaptic simulation using Al-doped HfO2 RRAM,” ACS Applied Materials & Interfaces, vol. 12, no. 9, pp. 10648–10656, 2020, doi: 10.1021/acsami.9b21530 [12]L. Wu, H. Liu, J. Lin, and S. Wang, “Self-compliance and high performance Pt /HfOx /Ti rram achieved through annealing,” Nanomaterials, vol. 10, no. 3, p. 457, 2020, doi: 10.3390/nano10030457 [13]P. Wu, H.X. Zheng, C.C. Shih, T.C. Chang, W.J. Chen, C.C. Yang, W.C. Chen, M.C. Tai, Y.F. Tan, H.C. Huang, X.H. Ma , Y. Hao, T.M. Tsai, and S.M. Sze, “Improvement of resistive switching characteristics in zinc oxide-based resistive random access memory by ammoniation annealing,” IEEE Electron Device Letters, vol. 41, no. 3, pp. 357-360, March 2020, doi: 10.1109/LED.2020.2968629. [14]Y. M. Sun, C. Song, J. Yin, L. L. Qiao, R. Wang, Z. Y. Wang, X. Z. Chen, S. Q. Yin, M. S. Saleem, H. Q. Wu, F. Zeng, and F. Pan, “Modulating metallic conductive filaments via bilayer oxides in resistive switching memory,” Applied Physics Letters, vol. 114, no. 19, p. 193502, 2019. doi: 10.1063/1.5098382 [15]W. Zhu, J. Li, X. Xu, L. Zhang and Y. Zhao, “Low power and ultrafast multi-state switching in nc-Al induced Al2O3/AlxOy bilayer thin film RRAM device,” IEEE Access, vol. 8, pp. 16310-16315, 2020, doi: 10.1109/ACCESS.2020.2966026. [16]X. L. Hong, D. J. J. Loy, P. A. Dananjaya, F. Tan, C. M. Ng, and W. S. Lew, “Oxide-based RRAM materials for neuromorphic computing,” Journal of Materials Science, vol. 53, no. 12, pp. 8720–8746, 2018, doi:10.1007/s10853-018-2134-6 [17]S. Yu, Y. Wu, R. Jeyasingh, D. Kuzum and P. Wong, “An electronic synapse device based on metal oxide resistive switching memory for neuromorphic computation,” IEEE Transactions on Electron Devices, vol. 58, no. 8, pp. 2729-2737, Aug. 2011, doi: 10.1109/TED.2011.2147791. [18]S. Yu, B. Gao, Z. Fang, H. Yu, J. Kang, and H.-S. P. Wong, “A neuromorphic visual system using RRAM synaptic devices with Sub-pj energy and tolerance to variability: experimental characterization and large-scale modeling,” 2012 International Electron Devices Meeting, 2012, doi: 10.1109/IEDM.2012.6479018. [19]S. Chandrasekaran, F. M. Simanjuntak, R. Saminathan, D. Panda, and T.-Y. Tseng, “Improving linearity by introducing Al in HfO2 as a memristor synapse device,” Nanotechnology, vol. 30, no. 44, p. 445205, 2019, doi: 10.1088/1361-6528/ab3480 [20]J. Wu, “Functional metal oxide nanostructures,” Springer, 2012. [21]H. Y. Lee, P. S. Chen, T. Y. Wu, Y. S. Chen, C. C. Wang, P. J. Tzeng, C. H. Lin, F. Chen, C. H. Lien, and M. J. Tsai, “Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM,” 2008 IEEE International Electron Devices Meeting, pp. 1-4, 2008, doi: 10.1109/IEDM.2008.4796677. [22] R. Waser and M. Aono, “Nanoionics-based resistive switching memories,” Nature Materials, vol. 6, no. 11, pp. 833–840, 2007. doi: 10.1038/nmat2023 [23]A. Prakash and H. Hwang, “Multilevel cell storage and resistance variability in resistive random access memory,” Physical Sciences Reviews, vol. 1, no. 6, 2016, doi: 10.1515/psr-2016-0010 [24]A. Sawa, “Resistive switching in transition metal oxides,” Materials Today, vol. 11, no. 6, pp. 28–36, 2008. doi: 10.1016/S1369-7021(08)70119-6. [25]L. Zhu, J. Zhou, Z. Guo, and Z. Sun, “An overview of materials issues in resistive random access memory,” Journal of Materiomics, vol. 1, no. 4, pp. 285–295, 2015. doi: 10.1016/j.jmat.2015.07.009. [26]F. C. Chiu, “A review on conduction mechanisms in dielectric films,” advances in materials science and engineering, vol. 2014, no. 578168, p. 18, 2014. doi: 10.1155/2014/578168 [27]E.W. Lim, and R. Ismail, “Conduction mechanism of valence change resistive switching memory: A survey,” Electronics 2015, vol. 4, no.3, pp. 586-613, 2015. doi: 10.3390/electronics4030586 [28]J. Backus, “Can programming be liberated from the von Neumann style? A functional style and its algebra of programs,” Communications of the ACM, vol. 21, pp. 613-641, 1978. doi: 10.1145/359576.359579 [29]D. Ielmini and H.-S. P. Wong, “In-memory computing with resistive switching devices,” Nature Electronics, vol. 1, no. 6, pp. 333–343, 2018. doi: 10.1038/s41928-018-0092-2 [30]G. Indiveri and S. Liu, “Memory and information processing in neuromorphic systems,” Proceedings of the IEEE, vol. 103, no. 8, pp. 1379-1397, Aug. 2015, doi: 10.1109/JPROC.2015.2444094. [31]S. Yu, Y. Wu, R. Jeyasingh, D. Kuzum and P. Wong, “An electronic synapse device based on metal oxide resistive switching memory for neuromorphic computation,” IEEE Transactions on Electron Devices, vol. 58, no. 8, pp. 2729-2737, Aug. 2011, doi: 10.1109/TED.2011.2147791. [32]P. A. Merolla1, J. V. Arthur, R. Alvarez-Icaza1, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba1, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science, vol. 345, no. 6197, pp. 668-673, Aug. 2014. doi: 10.1126/science.1254642 [33]M. Ziegler, C. Wenger, E. Chicca, and H. Kohlstedt, “Tutorial: Concepts for closely mimicking biological learning with memristive devices: principles to emulate cellular forms of learning,” Journal of Applied Physics, vol. 124, no. 15, p. 152003, 2018. doi: 10.1063/1.5042040 [34]G. Snider, “Spike-timing-dependent learning in memristive nanodevices,” 2008 IEEE International Symposium on Nanoscale Architectures, pp. 85-92, 2008. doi: 10.1109/NANOARCH.2008.4585796. [35]G. W. Burr, R. M. Shelby, A. Sebastian, S. Kim, S. Kim, S. Sidler, K. Virwani, M. Ishii, P. Narayanan, A. Fumarola, L. L. Sanches, I. Boybat, M. Le Gallo, K. Moon, J. Woo, H. Hwang and Y. Leblebici, “Neuromorphic computing using nonvolatile memory,” Adv Phys X, vol.2, pp. 89–124, 2017. doi: 10.1080/23746149.2016.1259585 [36]V. Milo, G. Pedretti, R. Carboni, A. Calderoni, N. Ramaswamy, S. Ambrogio, and D. Ielmini, “A 4-transistors/1-resistor hybrid synapse based on resistive switching memory (RRAM) capable of spike-rate-dependent plasticity (SRDP),” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 26, no. 12, pp. 2806-2815, Dec. 2018, doi: 10.1109/TVLSI.2018.2818978. [37]S. Yu, B. Gao, Z. Fang, H. Yu, J. Kang and P. Wong, “A neuromorphic visual system using RRAM synaptic devices with sub-pJ energy and tolerance to variability: Experimental characterization and large-scale modeling,” 2012 International Electron Devices Meeting, pp. 10.4.1-10.4.4, 2012, doi: 10.1109/IEDM.2012.6479018. [38]G. Piccolboni, G. Molas, J. M. Portal, R. Coquand, M. Bocquet, D. Garbin, E. Vianello, C. Carabasse, V. Delaye, C. Pellissier, T. Magis, C. Cagli, M. Gely, O. Cueto, D. Deleruyelle1, G. Ghibaudo2, B. De Salvo, L. Pern i ola, “Investigation of the potentialities of vertical resistive RAM (VRRAM) for neuromorphic applications,” 2015 IEEE International Electron Devices Meeting (IEDM), pp. 17.2.1-17.2.4, 2015, doi: 10.1109/IEDM.2015.7409717. [39]C. Sung, S. Lim, H. Kim, T. Kim, K. Moon, J. Song, J.-J. Kim, and H. Hwang, “Effect of conductance linearity and multi-level cell characteristics of taox-based synapse device on pattern recognition accuracy of neuromorphic system,” Nanotechnology, vol. 29, no. 11, p. 115203, 2018, doi: 10.1088/1361-6528/aaa733. [40]J. Woo, A. Padovani, K. Moon, M. Kwak, L. Larcher and H. Hwang, “Linking conductive filament properties and evolution to synaptic behavior of RRAM devices for neuromorphic applications,” IEEE Electron Device Letters, vol. 38, no. 9, pp. 1220-1223, Sept. 2017, doi: 10.1109/LED.2017.2731859. [41]Z. Chai, P. Freitas, W. Zhang, F. Hatem, J. F. Zhang, J. Marsland, B. Govoreanu, L. Goux and G. S. Kar, “Impact of RTN on pattern recognition accuracy of RRAM-based synaptic neural network.” IEEE Electron Device Letters, vol.39, no. 11, pp. 1652-1655, 2018, doi:10.1109/LED.2018.2869072. [42]S. Park, H. Kim, M. Choo, J. Noh, A. Sheri, S. Jung, K. Seo, J. Park, S. Kim, W. Lee, J. Shin, D. Lee, G. Choi, J. Woo, E. Cha, J. Jang, C. Park, M. Jeon, B. Lee, B. H. Lee and H. Hwang, “RRAM-based synapse for neuromorphic system with pattern recognition function,” 2012 International Electron Devices Meeting, pp. 10.2.1-10.2.4, 2012, doi: 10.1109/IEDM.2012.6479016. [43]Y. Wu, S. Yu, P. Wong, Y. Chen, H. Lee, S. Wang, P. Gu, F. Chen, M. Tsai, “AlOx-based resistive switching device with gradual resistance modulation for neuromorphic device application,” 2012 4th IEEE International Memory Workshop, pp. 1-4, 2012, doi: 10.1109/IMW.2012.6213663. [44]K. C. Chuang, C. Y. Chu, H. X. Zhang, J. D. Luo, W. S. Li, Y. S. Li and H. C. Cheng, “Impact of the stacking order of HfOx and AlOx dielectric films on RRAM switching mechanisms to behave digital resistive switching and synaptic characteristics,” IEEE Journal of the Electron Devices Society, vol. 7, pp. 589-595, 2019, doi: 10.1109/JEDS.2019.2915975. [45]G. Ma, Y. He, C. Liu, H. Wang, Y. Tseng and T. Chang, “Realization of storage and synaptic simulation behaviors based on different forming modes,” in IEEE Electron Device Letters, vol. 40, no. 8, pp. 1257-1260, Aug. 2019, doi: 10.1109/LED.2019.2922996. [46]B. Hudec, C.W. Hsu, I.T. Wang, W.L. Lai, C.C. Chang, T. Wang, K. Fröhlich, C.H. Ho, C.H. Lin, and T.H. Hou, “3D resistive RAM cell design for high-density storage class memory—a review,” Sci. China Inf. Sci., vol. 59, no. 61403, pp. 1-21, Mar. 2016, doi: 10.1007/s11432-016-5566-0 [47]Y. Deng, H. Y. Chen, B. Gao, S. Yu, S. C. Wu, L. Zhao, B. Chen, Z. Jiang, X. Liu, T. H. Hou, Y. Nishi, J. Kang, and P. Wong, “Design and optimization methodology for 3D RRAM arrays,” 2013 IEEE International Electron Devices Meeting, pp. 25.7.1-25.7.4, 2013, doi: 10.1109/IEDM.2013.6724693. [48]H.-Y. Chen, S. Brivio, C.-C. Chang, J. Frascaroli, T.-H. Hou, B. Hudec, M. Liu, H. Lv, G. Molas, J. Sohn, S. Spiga, V. M. Teja, E. Vianello, and H.-S. P. Wong, “Resistive random access memory (RRAM) technology: from material, device, selector, 3D integration to bottom-up fabrication,” Journal of Electroceramics, vol. 39, no. 1-4, pp. 21–38, 2017. doi: 10.1007/s10832-017-0095-9 [49]H. Sik Yoon, I. Baek, J. Zhao, H. Sim, M. Young Park, H. Lee, G. Oh, J. Chan Shin, I. Yeo, and U. Chung, “Vertical cross-point resistance change memory for ultra-high density non-volatile memory applications,” 2009 Symposium on VLSI Technology, pp. 26-27, 2009. [50]I. G. Baek, C. J. Park, H. Ju, D. J. Seong, H. S. Ahn, J. H. Kim, M. K. Yang, S. H. Song, E. M. Kim, S. O. Park, C. H. Park, C. W. Song, G. T. Jeong, S. Choi, H. K. Kang and C. Chung, “Realization of vertical resistive memory (VRRAM) using cost effective 3D process,” 2011 International Electron Devices Meeting, pp. 31.8.1-31.8.4, 2011 doi: 10.1109/IEDM.2011.6131654. [51]I. G. Baek, D. C. Kim, M. J. Lee, H. J. Kim, E. K. Yim, M. S. Lee, J. E. Lee, S. E. Ahn, S. Seo, J. H. Lee, J. C. Park, Y. K. Cha, S. O. Park, H. S. Kim, I. K. Yoo, U. I. Chung, J. T. Moon and B. I. Ryu, “Multi-layer cross-point binary oxide resistive memory (OxRRAM) for post-NAND storage application,” IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest., pp. 750-753, 2005, doi: 10.1109/IEDM.2005.1609462. [52]S. Lee, J. Sohn, Z. Jiang, H.-Y. Chen, and H.-S. Philip Wong, “Metal oxide-resistive memory using graphene-edge electrodes,” Nature Communications, vol. 6, no. 1, 2015. doi: 10.1038/ncomms9407 [53]P. Wu, H. Zheng, C. Shih , T. Chang, W. Chen, C. Yang, W. Chen, M. Tai , Y. Tan, H. Huang, X. Ma , Y. Hao, T. Tsai and S. M. Sze, “Improvement of resistive switching characteristics in zinc oxide-based resistive random access memory by ammoniation annealing,” in IEEE Electron Device Letters, vol. 41, no. 3, pp. 357-360, March 2020, doi: 10.1109/LED.2020.2968629. [54]I.-T. Wang, C.-C. Chang, L.-W. Chiu, T. Chou, and T.-H. Hou, “3D Ta/TaOx/TiO2/Ti synaptic array and linearity tuning of weight update for hardware neural network applications,” Nanotechnology, vol. 27, no. 36, p. 365204, 2016, 10.1088/0957-4484/27/36/365204. [55] S. Chandrasekaran, F. M. Simanjuntak, R. Saminathan, D. Panda, and T.-Y. Tseng, “Improving linearity by introducing Al in HfO2 as a memristor synapse device,” Nanotechnology, vol. 30, no. 44, p. 445205, 2019, doi: 10.1088/1361-6528/ab3480 [56] S. Chandrasekaran, F. M. Simanjuntak, D. Panda and T. Tseng, "Enhanced synaptic linearity in ZnO-based invisible memristive synapse by introducing double pulsing scheme," in IEEE Transactions on Electron Devices, vol. 66, no. 11, pp. 4722-4726, Nov. 2019, doi: 10.1109/TED.2019.2941764.
|