跳到主要內容

臺灣博碩士論文加值系統

(44.201.72.250) 您好!臺灣時間:2023/09/27 08:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳立哲
研究生(外文):Chen, Li-Che
論文名稱:應用於高頻VIENNA功因修正轉換器之柔性切換電路
論文名稱(外文):A Soft-Switching Circuit for High-Frequency VIENNA Power Factor Correction Converter
指導教授:李嘉猷
指導教授(外文):Lee, Jia-You
口試委員:陳建富羅國原
口試委員(外文):Chen, Jiann-FuhLo, Kuo-Yuan
口試日期:2021-07-20
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:121
中文關鍵詞:VIENNA功率因數修正轉換器柔性切換零電壓導通
外文關鍵詞:VIENNA PFCSoft-switchingZero voltage switching
相關次數:
  • 被引用被引用:1
  • 點閱點閱:159
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文針對高頻化三相交流輸入系統之功率因數修正轉換器,研製應用於VIENNA功因修正轉換器之柔性切換電路,採用相對於整合型架構,具有較高設計彈性之輔助電路,使主開關達到零電壓導通,配合禁能點設計,降低低電流下輔助電路造成之能量損失,提升整體系統效率,並透過緩振電路的設計解決輔助電路中,輔助電感產生的開關電壓應力問題。本文透過軟體模擬及硬體電路的實現,驗證本文架構於各輸入電流下之零電壓導通效果,且最高效率提升為2.5 %。最後基於平均電流控制模式,設計主開關與輔助開關控制,並於電路模擬軟體建置具緩振電路之柔性切換VIENNA 功率因數修正轉換器,根據模擬結果證明本文提出之功率因數修正轉換器,可於300 kHz開關切換頻率下達到零電壓切換效果。
This thesis focuses on the high-frequency power factor correction converters in three-phase AC system applications. To reduce the switching loss at high frequency, a soft-switching VIENNA power factor correction (PFC) converter is purposed, which provided zero voltage switching condition by auxiliary circuit. Furthermore, the problem of voltage stress across the auxiliary switches is solved by the addition of snubber circuit. In addition, the effectiveness of the proposed soft-switching VIENNA scheme has been validated through simulation and experimental results based on a 1 kW, 300 kHz hardware prototype with higher peak efficiency than hard-switching condition over the entire input current range. At last, the main switch and auxiliary switch control based on the average current control mode are designed and the simulation of soft-switching VIENNA PFC converter with snubber circuit are carried out. The simulated results proves that the purposed PFC converter could achieve zero voltage switching at 300 kHz switching frequency.
中文摘要 I
英文摘要 II
英文延伸摘要 III
誌謝 VIII
目錄 IX
表目錄 XII
圖目錄 XIII
第一章 緒論 1
1-1 研究動機與目的 1
1-2 研究背景 4
1-3 研究方法 8
1-4 論文大綱 10
第二章 功率因數修正技術 11
2-1 前言 11
2-2 諧波規範 11
2-3 功率因數定義 14
2-4 功率因數修正技術 15
2-4-1 連續導通模式 17
2-4-2 臨界導通模式 21
2-4-3 非連續導通模式 23
2-5 VIENNA整流器 24
第三章 柔性切換VIENNAPFC架構分析 30
3-1 前言 30
3-2 柔性切換VIENNAPFC電路設計 30
3-2-1 柔性切換VIENNAPFC模式分析 31
3-2-2 柔性切換VIENNA緩振電路 40
3-3 VIENNAPFC損耗分析 46
3-3-1 硬切換VIENNAPFC損耗分析 46
3-3-2 柔性切換VIENNAPFC損耗分析 47
3-3-3 具緩振電路之柔性切換VIENNAPFC損耗分析 49
3-4 具緩振電路柔性切換VIENNAPFC控制架構 53
3-4-1 主開關導通率控制 53
3-4-2 輔助開關導通率控制 54
3-4-3 PWM產生器 55
第四章 硬體電路設計 57
4-1 前言 57
4-2 VIENNAPFC電路設計 58
4-2-1 VIENNAPFC功率元件參數設計 59
4-2-2 電流誤差放大器補償設計 62
4-3 輔助電路架構設計 64
4-3-1 硬切換VIENNAPFC能量損耗計算 64
4-3-2 柔性切換VIENNAPFC能量損耗計算 65
4-3-3 具緩振電路之柔性切換VIENNAPFC能量損耗計算 66
4-4 輔助電路參數設計 68
4-4-1 輔助電感值設計 69
4-4-2 輔助電路禁能點設計 71
4-5 系統控制設計 73
4-5-1 數位訊號控制器簡介及腳位規劃 73
4-5-2 正負半週判斷電路及輸入參考波形回授設計 76
第五章 電路模擬與實驗結果 78
5-1 前言 78
5-2 柔性切換VIENNAPFC開迴路模擬 78
5-2-1 正負半週判斷電路及開關驅動電路 79
5-2-2 具緩振電路之柔性切換VIENNAPFC開迴路模擬 81
5-2-3 瞬時輸入電流效率模擬 90
5-3 柔性切換VIENNAPFC實驗波形量測 92
5-4 柔性切換VIENNAPFC電流迴路控制模擬驗證 101
5-4-1 控制及週邊電路簡介 103
5-4-2 柔性切換VIENNAPFC電流迴路控制模擬結果 106
第六章 結論與未來研究方向 113
6-1 結論 113
6-2 未來研究方向 114
參考文獻 115
[1] J. W. Kolar and F. C. Zach, “A novel three-phase utility interface minimizing line current harmonics of high power telecommunications rectifiers modules,” IEEE Trans. Ind. Electron., vol. 44, pp. 456-467, Aug. 1997.
[2] M.-H. Park, J.-I. Baek, Y. Jeong, and G.-W. Moon, “An interleaved totem-pole bridgeless boost PFC converter with soft-switching capability adopting phase-shifting control,” IEEE Trans. Power Electron., vol. 34, no. 11, pp. 10610-10618, Nov. 2019.
[3] 鍾永祺,應用於固態變壓器之輸入串聯輸出並聯電源轉換器研製,國立成功大學電機工程學系碩士論文,2020年。
[4] D. Chapman, D. James, and C. J. Tuck, “A high density 48V 200A rectifier with power factor correction - an engineering overview, ” in Proc. IEEE Int. Telecommun. Energy Conf., 1993, pp. 118-125.
[5] R. Greul, S. D. Round, and J. W. Kolar, “The delta-rectifier : analysis, control and operation,” IEEE Trans. Power Electron., vol. 21, no. 6, pp. 1637-1648, Nov. 2006.
[6] Ali Sunbul, “Controlling the vienna rectifier using a simplified space vector pulse width modulation technique,” M. S. thesis, University of Ontario Institute of Technology, Oshawa, Ontario, Canada, 2019.
[7] T. Friedli, M. Hartmann, and J. W. Kolar, “The essence of three-phase PFC rectifier systems—part II,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 543-560, Feb. 2014.
[8] J. Millán, P. Godignon, X. Perpiñà, A. Pérez-Tomás, and J. Rebollo, “A survey of wide bandgap power semiconductor devices,” IEEE Trans. Power Electron., vol. 29, no. 5, pp. 2155-2163, May 2014.
[9] Krishna Shenai, “Future prospects of widebandgap (WBG) semiconductor power switching devices,” IEEE Trans. Electron Devices, vol. 62, no. 2, pp. 248-257, Feb. 2015.
[10] E. A. Jones, F. F. Wang, and D. Costinett, “Review of commercial GaN power devices and GaN-based converter design challenges,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 4, no. 3, pp. 707-719, Sep. 2016.
[11] Y. Kim, J. Kim, K. Choi, B. Suh, and R. Kim, “A novel soft-switched auxiliary resonant circuit of a PFC ZVT-PWM boost converter for an integrated multichip power module fabrication,” IEEE Trans. Ind. Appl., vol. 49, no.6, pp. 2802-2809, Nov. 2013.
[12] Z. Yu, Y. Xia, and R. Ayyanar, “A simple ZVT auxiliary circuit for totem-pole bridgeless PFC rectifier,” IEEE Trans. Ind. Appl., vol.55, no. 3, pp. 2868-2878, May 2019.
[13] C. M. T. Cruz and I. Barbi, “A passive lossless snubber for the high power factor unidirectional three-phase three-level rectifier,” in Proc. IEEE IECON’99, vol. 2, 1999, pp. 909-914.
[14] F. L. Tofoli, E. A. A. Coelho, L. C. de Freitas, V. J. Farias, and J. B. Vieira, “Proposal of a soft-switching single-phase three-level rectifier,” IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 107-113, Jan. 2008.
[15] A. Ali, M. M. Khan, J. Yuning, Y. Ali, M. T. Faiz, and J. Chuanwen, “ZVS/ZCS Vienna rectifier topology for high power applications,” IET Power Electron., vol. 12, no. 5, pp. 1285-1294, Jan. 2019.
[16] L. Huber, Y. Jang and M. M. Jovanovic, “Performance evaluation of bridgeless PFC boost rectifiers,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1381-1390, May 2008.
[17] 李宗磬,1.5 kW伺服器前級電源功率因數修正之系統性能分析與改善,國立交通大學電機與控制工程學系碩士論文,2008年。
[18] S. D. Round, P. Karutz, M. L. Heldwein, and J. W. Kolar, “Towards a 30 kW/liter, three-phase unity power factor rectifier,” in Proc. Power Convers. Conf., vol. 2, 2007, pp. 1251-1259.
[19] B. Liu, R. Ren, E. A. Jones, F. Wang, D. Costinett, and Z. Zhang, “A modulation compensation scheme to reduce input current distortion in GaN-based high switching frequency three-phase three-level vienna-type rectifiers,” IEEE Trans. Power Electron., vol. 33, no. 1, pp. 283-298, Jan. 2018.
[20] T. Zhao, L. Yang, J. Wang, and A. Q. Huang, “270 kVA solid state transformer based on 10 kV SiC power devices,” in Proc. IEEE Elect. Ship Technol. Symp., 2007, pp. 145-149.
[21] S. Chen, W. Yu, and D. Meyer, “Design and implementation of forced air-cooled 140kHz 20kW SiC MOSFET based Vienna PFC,” in Proc. IEEE Appl. Power Electron. Conf. Expo., 2019, pp. 1196-1203.
[22] Y. Tang, W. Ding, and A. Khaligh, “A bridgeless totem-pole interleaved PFC converter for plug-in electric vehicles,” in Proc. IEEE Appl. Power Electron. Conf. Expo., 2016, pp. 440-445.
[23] GaN Systems, “High efficiency CCM bridgeless totem pole PFC design using GaN E-HEMT” GS665BTP, Jan. 2018. [Online]. Available: https://gansystems.com/wp-content/uploads/2018/01/GS665BTP-REF-rev170905.pdf.
[24] R. W. De Donker and J. P. Lyons, “The auxiliary resonant commutated pole inverter,” in Proc. IEEE-IAS Annu. Meeting, 1990, pp. 1228–1235.
[25] K. Fujii, P. Koellensperger, and R. W. De Doncker, “Characterization and comparison of high blocking voltage IGBTs and IEGTs under hard- and soft-switching conditions,” IEEE Trans. Power Electron., vol. 23, no. 1, pp. 172-179, Jan. 2008.
[26] W. Dong, J.–Y. Choi, F. C. Lee, D. Boroyevich, and J. Lai, "Comprehensive evaluation of auxiliary resonant commutated pole inverter for electric vehicle applications," in Proc. IEEE Power Electron. Spec. Conf., 2001, pp. 625–630.
[27] J. Voss, J. Henn, and R.W. De Doncker, “Control techniques of the auxiliary-resonant commutated pole with special regards on the dual-active bridge DC-DC converter,” CPSS Transactions on Power Electronics and Applications, vol. 3, no. 4, pp. 352-361, Dec. 2018.
[28] J. Voss, J. Warmuz, D. Mathai, and R. W. De Doncker, “Adapted auxiliary-resonant commutated pole in the dual-active bridge,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 7, no. 4, pp. 2553-2560, Dec. 2019.
[29] J. Lai, R. W. Young, G. W. Ott, J. W. McKeever, and F. Z. Peng, “A delta-configured auxiliary resonant snubber inverter,” IEEE Trans. Ind. Appl., vol. 32, no. 3, pp. 518-525, May/Jun. 1996.
[30] J.-S. Lai, “Practical design methodology of auxiliary resonant snubber inverters,” in Proc. 27th Annu. IEEE Power Electron. Spec. Conf., 1996, pp. 432-437.
[31] J.-S. Lai, J. Zhang, H. Yu, and H. Kouns, “Source and load adaptive design for a high-power soft-switching inverter,” IEEE Trans. Power Electron., vol. 21, no. 6, pp. 1667-1675, Nov. 2006.
[32] J.-Y. Choi, D. Boroyevich, J. Francis, and F.C. Lee, "A novel ZVT inverter with simplified auxiliary circuit", in Proc. IEEE Appl. Power Electron. Conf., pp. 1151-1157, 2001. 
[33] Y. Li, F. C. Lee, and D. Boroyevich, “A three-phase soft-transition inverter with a novel control strategy for zero-current and near zero-voltage switching,” IEEE Trans. Power Electron., vol. 16, no. 5, pp. 710-723, Sep. 2001.
[34] C. Rizet, J. P. Ferrieux, P. Le Moigne, P. Delarue, and A. Lacarnoy, “A simplified resonant pole for three-level soft-switching PFC rectifier used in UPS,” IEEE Trans. Ind. Electron., vol. 57, no. 8, pp. 2739–2746, Aug. 2010.
[35] J. Roy, Y. Xia, and R. Ayyanar, “GaN-based high gain soft switching coupled-inductor boost converter,” in IEEE Energy Conversion Congress and Exposition (ECCE), 2017, pp. 1687-1693.
[36] N. Korada and R. Ayyanar, "A 3 kW 500 kHz E-mode GaN HEMT based soft-switching totem-pole PFC", in IEEE 7th Workshop on Wide Bandgap Power Devices and Applications (WiPDA) , 2019, pp. 237-244.
[37] Y. Suzuki, T. Teshima, I. Sugawara, and A. Takeuchi, “Experimental studies on active and passive PFC circuits,” in Proc. IEEE Int. Telecommun. Energy Conf., 1997, pp. 571-578.
[38] R. Redl and B. P. Erisman, “Reducing distortion in peak-current controlled boost power-factor correctors,” in Proc. IEEE Int. Power Electron. Congr., 1994, pp. 92-100.
[39] C. Zhou, R. B. Ridley, and F. C. Lee, “Design and analysis of a hysteretic boost power factor correction circuit,” in Proc. IEEE PESC, 1990, pp. 800-807.
[40] J. Rajagopalan, F. C. Lee, and P. Nora, “A general technique for derivation of average current mode control laws for single-phase power-factor correction circuits without input voltage sensing,” IEEE Trans. Power Electron., vol. 14, no. 4, pp. 663-672, Jul. 1999.
[41] L. Dixon, “Average current mode control of switching power supplies,” Unitrode Application note, U-140, pp. 356-369, 1999.
[42] C. Adragna, “L6561, enhanced transition mode power factor corrector,” STMicroelectronics Application note, AN966, 2003.
[43] J. S. Lai and D. Chen, “Design considerations for power factor correction boost converter operating at the boundary of continuous conduction mode and discontinuous conduction mode,” in Proc. IEEE APEC, 1993, pp. 267-273.
[44] Johann W. Kolar, “Vorrichtung und Verfahren zur Umformung von Drehstrom in Gleichstrom,” European Patent 0,660,498, 13 Dec., 1993.
[45] J. W. Kolar, H. Ertl, and F. C. Zach, “Design and experimental investigation of a three-phase high power density high efficiency unity power factor PWM (VIENNA) rectifier employing a novel power semiconductor module,” in Proc. IEEE APEC, 1996, pp. 514-523.
[46] T. Soeiro, T. Friedli, M. Hartmann, and J. W. Kolar, “New unidirectional hybrid delta-switch rectifier,” in Proc. Int. Power Electron. Conf., 2011, pp. 1474-1479.
[47] Thiago B. Soeiro, Johann W. Kolar, “Analysis of high-efficiency three-phase two- and three-level unidirectional hybrid rectifiers,” IEEE Trans. Ind. Electron., vol. 60, no. 9, pp. 3589-3601, Sep. 2013.
[48] T. Thangavelu, P. Shanmugam, and K. Raj, “Modelling and control of VIENNA rectifier a single phase approach,” IET Power Electron., vol. 8, no. 12, pp. 2471-2482, Dec. 2015.
[49] L. Balogh, “Fundamentals of MOSFET and IGBT gate driver circuits,” Texas Instruments Application Report, SLUA618, 2018.
[50] On Semiconductor, “Power factor correction stages operating in critical conduction mode,” On Semiconductor Application Report, AND8123/D, 2014.
[51] S. Abdel-Rahman, F. Stückler, and K. Siu, “PFC boost converter design guide,” Infineon Application Report, AN_201409_PL52_009, 2014.
[52] Texas Instruments, “Vienna rectifier-based, three-phase power factor correction (PFC) reference design using C2000™ MCU” TIDUCJ0B, Apr. 2020. [Online]. Available: https://www.ti.com/tool/TIDM-1000
[53] C3M0065090D Datasheet, Cree, 2019.
[54] IDH16G120C5 Datasheet, Infineon, 2017.
[55] dsPIC33CK256MP508 Family Datasheet, Microchip Technology, 2017-2018.
[56] dsPIC33/PIC24 FRM—High-Resolution PWM with Fine Edge Placement Family Datasheet, Microchip Technology, 2018.
[57] TL08xx FET-Input Operational Amplifiers Datasheet, Texas Instruments, 2020.
[58] D. Jones and M. Stitt, “PRECISION ABSOLUTE VALUE CIRCUITS,” Burr-Brown Application Bulletin, Sboa068, 1997.
電子全文 電子全文(網際網路公開日期:20260810)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top