[1] J. W. Kolar and F. C. Zach, “A novel three-phase utility interface minimizing line current harmonics of high power telecommunications rectifiers modules,” IEEE Trans. Ind. Electron., vol. 44, pp. 456-467, Aug. 1997.
[2] M.-H. Park, J.-I. Baek, Y. Jeong, and G.-W. Moon, “An interleaved totem-pole bridgeless boost PFC converter with soft-switching capability adopting phase-shifting control,” IEEE Trans. Power Electron., vol. 34, no. 11, pp. 10610-10618, Nov. 2019.
[3] 鍾永祺,應用於固態變壓器之輸入串聯輸出並聯電源轉換器研製,國立成功大學電機工程學系碩士論文,2020年。[4] D. Chapman, D. James, and C. J. Tuck, “A high density 48V 200A rectifier with power factor correction - an engineering overview, ” in Proc. IEEE Int. Telecommun. Energy Conf., 1993, pp. 118-125.
[5] R. Greul, S. D. Round, and J. W. Kolar, “The delta-rectifier : analysis, control and operation,” IEEE Trans. Power Electron., vol. 21, no. 6, pp. 1637-1648, Nov. 2006.
[6] Ali Sunbul, “Controlling the vienna rectifier using a simplified space vector pulse width modulation technique,” M. S. thesis, University of Ontario Institute of Technology, Oshawa, Ontario, Canada, 2019.
[7] T. Friedli, M. Hartmann, and J. W. Kolar, “The essence of three-phase PFC rectifier systems—part II,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 543-560, Feb. 2014.
[8] J. Millán, P. Godignon, X. Perpiñà, A. Pérez-Tomás, and J. Rebollo, “A survey of wide bandgap power semiconductor devices,” IEEE Trans. Power Electron., vol. 29, no. 5, pp. 2155-2163, May 2014.
[9] Krishna Shenai, “Future prospects of widebandgap (WBG) semiconductor power switching devices,” IEEE Trans. Electron Devices, vol. 62, no. 2, pp. 248-257, Feb. 2015.
[10] E. A. Jones, F. F. Wang, and D. Costinett, “Review of commercial GaN power devices and GaN-based converter design challenges,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 4, no. 3, pp. 707-719, Sep. 2016.
[11] Y. Kim, J. Kim, K. Choi, B. Suh, and R. Kim, “A novel soft-switched auxiliary resonant circuit of a PFC ZVT-PWM boost converter for an integrated multichip power module fabrication,” IEEE Trans. Ind. Appl., vol. 49, no.6, pp. 2802-2809, Nov. 2013.
[12] Z. Yu, Y. Xia, and R. Ayyanar, “A simple ZVT auxiliary circuit for totem-pole bridgeless PFC rectifier,” IEEE Trans. Ind. Appl., vol.55, no. 3, pp. 2868-2878, May 2019.
[13] C. M. T. Cruz and I. Barbi, “A passive lossless snubber for the high power factor unidirectional three-phase three-level rectifier,” in Proc. IEEE IECON’99, vol. 2, 1999, pp. 909-914.
[14] F. L. Tofoli, E. A. A. Coelho, L. C. de Freitas, V. J. Farias, and J. B. Vieira, “Proposal of a soft-switching single-phase three-level rectifier,” IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 107-113, Jan. 2008.
[15] A. Ali, M. M. Khan, J. Yuning, Y. Ali, M. T. Faiz, and J. Chuanwen, “ZVS/ZCS Vienna rectifier topology for high power applications,” IET Power Electron., vol. 12, no. 5, pp. 1285-1294, Jan. 2019.
[16] L. Huber, Y. Jang and M. M. Jovanovic, “Performance evaluation of bridgeless PFC boost rectifiers,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1381-1390, May 2008.
[17] 李宗磬,1.5 kW伺服器前級電源功率因數修正之系統性能分析與改善,國立交通大學電機與控制工程學系碩士論文,2008年。[18] S. D. Round, P. Karutz, M. L. Heldwein, and J. W. Kolar, “Towards a 30 kW/liter, three-phase unity power factor rectifier,” in Proc. Power Convers. Conf., vol. 2, 2007, pp. 1251-1259.
[19] B. Liu, R. Ren, E. A. Jones, F. Wang, D. Costinett, and Z. Zhang, “A modulation compensation scheme to reduce input current distortion in GaN-based high switching frequency three-phase three-level vienna-type rectifiers,” IEEE Trans. Power Electron., vol. 33, no. 1, pp. 283-298, Jan. 2018.
[20] T. Zhao, L. Yang, J. Wang, and A. Q. Huang, “270 kVA solid state transformer based on 10 kV SiC power devices,” in Proc. IEEE Elect. Ship Technol. Symp., 2007, pp. 145-149.
[21] S. Chen, W. Yu, and D. Meyer, “Design and implementation of forced air-cooled 140kHz 20kW SiC MOSFET based Vienna PFC,” in Proc. IEEE Appl. Power Electron. Conf. Expo., 2019, pp. 1196-1203.
[22] Y. Tang, W. Ding, and A. Khaligh, “A bridgeless totem-pole interleaved PFC converter for plug-in electric vehicles,” in Proc. IEEE Appl. Power Electron. Conf. Expo., 2016, pp. 440-445.
[23] GaN Systems, “High efficiency CCM bridgeless totem pole PFC design using GaN E-HEMT” GS665BTP, Jan. 2018. [Online]. Available: https://gansystems.com/wp-content/uploads/2018/01/GS665BTP-REF-rev170905.pdf.
[24] R. W. De Donker and J. P. Lyons, “The auxiliary resonant commutated pole inverter,” in Proc. IEEE-IAS Annu. Meeting, 1990, pp. 1228–1235.
[25] K. Fujii, P. Koellensperger, and R. W. De Doncker, “Characterization and comparison of high blocking voltage IGBTs and IEGTs under hard- and soft-switching conditions,” IEEE Trans. Power Electron., vol. 23, no. 1, pp. 172-179, Jan. 2008.
[26] W. Dong, J.–Y. Choi, F. C. Lee, D. Boroyevich, and J. Lai, "Comprehensive evaluation of auxiliary resonant commutated pole inverter for electric vehicle applications," in Proc. IEEE Power Electron. Spec. Conf., 2001, pp. 625–630.
[27] J. Voss, J. Henn, and R.W. De Doncker, “Control techniques of the auxiliary-resonant commutated pole with special regards on the dual-active bridge DC-DC converter,” CPSS Transactions on Power Electronics and Applications, vol. 3, no. 4, pp. 352-361, Dec. 2018.
[28] J. Voss, J. Warmuz, D. Mathai, and R. W. De Doncker, “Adapted auxiliary-resonant commutated pole in the dual-active bridge,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 7, no. 4, pp. 2553-2560, Dec. 2019.
[29] J. Lai, R. W. Young, G. W. Ott, J. W. McKeever, and F. Z. Peng, “A delta-configured auxiliary resonant snubber inverter,” IEEE Trans. Ind. Appl., vol. 32, no. 3, pp. 518-525, May/Jun. 1996.
[30] J.-S. Lai, “Practical design methodology of auxiliary resonant snubber inverters,” in Proc. 27th Annu. IEEE Power Electron. Spec. Conf., 1996, pp. 432-437.
[31] J.-S. Lai, J. Zhang, H. Yu, and H. Kouns, “Source and load adaptive design for a high-power soft-switching inverter,” IEEE Trans. Power Electron., vol. 21, no. 6, pp. 1667-1675, Nov. 2006.
[32] J.-Y. Choi, D. Boroyevich, J. Francis, and F.C. Lee, "A novel ZVT inverter with simplified auxiliary circuit", in Proc. IEEE Appl. Power Electron. Conf., pp. 1151-1157, 2001.
[33] Y. Li, F. C. Lee, and D. Boroyevich, “A three-phase soft-transition inverter with a novel control strategy for zero-current and near zero-voltage switching,” IEEE Trans. Power Electron., vol. 16, no. 5, pp. 710-723, Sep. 2001.
[34] C. Rizet, J. P. Ferrieux, P. Le Moigne, P. Delarue, and A. Lacarnoy, “A simplified resonant pole for three-level soft-switching PFC rectifier used in UPS,” IEEE Trans. Ind. Electron., vol. 57, no. 8, pp. 2739–2746, Aug. 2010.
[35] J. Roy, Y. Xia, and R. Ayyanar, “GaN-based high gain soft switching coupled-inductor boost converter,” in IEEE Energy Conversion Congress and Exposition (ECCE), 2017, pp. 1687-1693.
[36] N. Korada and R. Ayyanar, "A 3 kW 500 kHz E-mode GaN HEMT based soft-switching totem-pole PFC", in IEEE 7th Workshop on Wide Bandgap Power Devices and Applications (WiPDA) , 2019, pp. 237-244.
[37] Y. Suzuki, T. Teshima, I. Sugawara, and A. Takeuchi, “Experimental studies on active and passive PFC circuits,” in Proc. IEEE Int. Telecommun. Energy Conf., 1997, pp. 571-578.
[38] R. Redl and B. P. Erisman, “Reducing distortion in peak-current controlled boost power-factor correctors,” in Proc. IEEE Int. Power Electron. Congr., 1994, pp. 92-100.
[39] C. Zhou, R. B. Ridley, and F. C. Lee, “Design and analysis of a hysteretic boost power factor correction circuit,” in Proc. IEEE PESC, 1990, pp. 800-807.
[40] J. Rajagopalan, F. C. Lee, and P. Nora, “A general technique for derivation of average current mode control laws for single-phase power-factor correction circuits without input voltage sensing,” IEEE Trans. Power Electron., vol. 14, no. 4, pp. 663-672, Jul. 1999.
[41] L. Dixon, “Average current mode control of switching power supplies,” Unitrode Application note, U-140, pp. 356-369, 1999.
[42] C. Adragna, “L6561, enhanced transition mode power factor corrector,” STMicroelectronics Application note, AN966, 2003.
[43] J. S. Lai and D. Chen, “Design considerations for power factor correction boost converter operating at the boundary of continuous conduction mode and discontinuous conduction mode,” in Proc. IEEE APEC, 1993, pp. 267-273.
[44] Johann W. Kolar, “Vorrichtung und Verfahren zur Umformung von Drehstrom in Gleichstrom,” European Patent 0,660,498, 13 Dec., 1993.
[45] J. W. Kolar, H. Ertl, and F. C. Zach, “Design and experimental investigation of a three-phase high power density high efficiency unity power factor PWM (VIENNA) rectifier employing a novel power semiconductor module,” in Proc. IEEE APEC, 1996, pp. 514-523.
[46] T. Soeiro, T. Friedli, M. Hartmann, and J. W. Kolar, “New unidirectional hybrid delta-switch rectifier,” in Proc. Int. Power Electron. Conf., 2011, pp. 1474-1479.
[47] Thiago B. Soeiro, Johann W. Kolar, “Analysis of high-efficiency three-phase two- and three-level unidirectional hybrid rectifiers,” IEEE Trans. Ind. Electron., vol. 60, no. 9, pp. 3589-3601, Sep. 2013.
[48] T. Thangavelu, P. Shanmugam, and K. Raj, “Modelling and control of VIENNA rectifier a single phase approach,” IET Power Electron., vol. 8, no. 12, pp. 2471-2482, Dec. 2015.
[49] L. Balogh, “Fundamentals of MOSFET and IGBT gate driver circuits,” Texas Instruments Application Report, SLUA618, 2018.
[50] On Semiconductor, “Power factor correction stages operating in critical conduction mode,” On Semiconductor Application Report, AND8123/D, 2014.
[51] S. Abdel-Rahman, F. Stückler, and K. Siu, “PFC boost converter design guide,” Infineon Application Report, AN_201409_PL52_009, 2014.
[52] Texas Instruments, “Vienna rectifier-based, three-phase power factor correction (PFC) reference design using C2000™ MCU” TIDUCJ0B, Apr. 2020. [Online]. Available: https://www.ti.com/tool/TIDM-1000
[53] C3M0065090D Datasheet, Cree, 2019.
[54] IDH16G120C5 Datasheet, Infineon, 2017.
[55] dsPIC33CK256MP508 Family Datasheet, Microchip Technology, 2017-2018.
[56] dsPIC33/PIC24 FRM—High-Resolution PWM with Fine Edge Placement Family Datasheet, Microchip Technology, 2018.
[57] TL08xx FET-Input Operational Amplifiers Datasheet, Texas Instruments, 2020.
[58] D. Jones and M. Stitt, “PRECISION ABSOLUTE VALUE CIRCUITS,” Burr-Brown Application Bulletin, Sboa068, 1997.