[1]Y. Lu, “Industry 4.0: A Survey on Technologies, Applications and Open Research Issues,” Journal of Industrial Information Integration, vol. 6, pp. 1-10, Jun. 2017.
[2]Cademix Institute of Technology, Industry 4.0. [Online]. Available: https://www.cademix.org/programs/industry-4-0/. [Accessed Jan. 27, 2021].
[3]Wikipedia, Smart manufacturing. [Online]. Available: https://en.wikipedia.org/wiki/Smart_manufacturing. [Accessed Jan. 27, 2021].
[4]B. Kehoe, S. Patil, P. Abbeel, and K. Goldberg, “A Survey of Research on Cloud Robotics and Automation,” IEEE Transactions on Automation Science and Engineering, vol. 12, no. 2, pp. 398-409, Apr. 2015.
[5]E. Sisinni, A. Saifullah, S. Han, U. Jennehag, and M. Gidlund, “Industrial Internet of Things: Challenges, Opportunities, and Directions,” IEEE Transactions on Industrial Informatics, vol. 14, no. 11, pp. 4724-4734, Nov. 2018.
[6]I. Shin, J. Lee, J. Y. Lee, K. Jung, D. Kwon, B. D. Youn, H. S. Jang, and J. H. Choi, “A Framework for Prognostics and Health Management Applications toward Smart Manufacturing Systems,” International Journal of Precision Engineering and Manufacturing-Green Technology, vol. 5, pp. 535-554, Aug. 2018.
[7]G-Y. Lee, M. Kim, Y-J. Quan, M-S. Kim, T. J. Y. Kim, H-S. Yoon, S. Min, D-H. Kim, J-W. Mun, J. W. Oh, I. G. Choi, C-S. Kim, W-S. Chu, J. Yang, B. Bhandari, C-M. Lee, J-B. Ihn, and S-H. Ahn, “Machine health management in smart factory: A review,” Journal of Mechanical Science and Technology, vol. 32, pp. 987–1009, 2018.
[8]Schaeffler Technologies AG & Co. KG. (2012, Mar. 1). Failure Analysis INA Bearing failure mode archive. [Online]. Available: https://www.schaeffler.com/remotemedien/media/_shared_media/08_media_library/01_publications/schaeffler_2/tpi/downloads_8/tpi_109_de_en.pdf. [Accessed Jan. 27, 2021].
[9]Schaeffler Technologies AG & Co. KG. (2010, Dec. 22). Rolling Bearing Damage: Recognition of damage and bearing inspection. [Online]. Available: https://www.schaeffler.com/remotemedien/media/_shared_media/08_media_library/01_publications/schaeffler_2/publication/downloads_18/wl_82102_3_de_en.pdf. [Accessed Jan. 27, 2021].
[10]C. Scheffer and P. Girdhar, Practical Machinery Vibration Analysis & Predictive Maintenance. Amsterdam, The Netherlands: Elsevier, 2004.
[11]B. Li, M-Y. Chow, Y. Tipsuwan, and J. C. Hung, “Neural-network-based motor rolling bearing fault diagnosis,” IEEE transactions on industrial electronics, vol. 47, no. 5, pp. 1060-1069, 2000.
[12]P. K. Kankar, S. C. Sharma, and S. P. Harsha, “Fault diagnosis of ball bearings using machine learning methods,” Expert Systems with Applications, vol. 38, no.3, pp. 1876-1886, Mar. 2011.
[13]A. K. Jalan and A. R. Mohanty, “Model based fault diagnosis of a rotor–bearing system for misalignment and unbalance under steady-state condition,” Journal of Sound and Vibration, vol. 327, pp. 604-622, Nov. 2009.
[14]W. Caesarendra, A. Widodo, P. H. Thom, B. Yang, and J. D. Setiawan, “Combined Probability Approach and Indirect Data-Driven Method for Bearing Degradation Prognostics,” IEEE Transactions on Reliability, vol. 60, no. 1, pp. 14-20, Mar. 2011.
[15]F. Q. Lauzon, “An introduction to deep learning,” The 11th International Conference on Information Sciences, Signal Processing and their Applications, Montreal, Canada, 2012, pp.1438-1439.
[16]Y. Lei, B. Yang, X. Jiang, F. Jia, N. Li, and A. K. Nandi, “Applications of machine learning to machine fault diagnosis: A review and roadmap,” Mechanical Systems and Signal Processing, vol. 138, no. 106587, 2020.
[17]A. D. Nembhard, J. K. Sinha, A. J. Pinkerton, and K. Elbhbah,“Fault diagnosis of rotating machines using vibration and bearing temperature measurements,” Diagnostyka, vol. 14, no. 3, pp. 45-51, 2013.
[18]R. B. Randall, “Detection and diagnosis of incipient bearing failure in helicopter gearboxes,” Engineering Failure Analysis , vol. 11, no. 2, pp. 177-190, 2004.
[19]P. K. Kankar, S. C. Sharma, and S. P. Harsha, “Fault diagnosis of ball bearings using continuous wavelet transform,” Applied Soft Computing, vol. 11, pp. 2300-2312, 2011.
[20]Y. Lei, J. Lin, Z. He, and Y. Zi, “Application of an improved kurtogram method for fault diagnosis of rolling element bearings,” Mechanical Systems and Signal Processing, vol. 25, pp. 1738-1749, 2011.
[21]A. M. Al-Ghamd and D. Mba, “A comparative experimental study on the use of acoustic emission and vibration analysis for bearing defect identification and estimation of defect size,” Mechanical Systems and Signal Processing, vol. 20, no. 7, pp. 1537-1571, Oct. 2006.
[22]J. Park, S. Kim, J-H. Choi, and S. H. Lee, “Frequency energy shift method for bearing fault prognosis using microphone sensor,” Mechanical Systems and Signal Processing, vol. 147, no. 107068, 2021.
[23]B. Yazici and G. B. Kliman, “An Adaptive Statistical Time–Frequency Method for Detection of Broken Bars and Bearing Faults in Motors Using Stator Current,” IEEE Transactions on Industry Applications, vol. 35, no. 2, pp. 442-452, 1999.
[24]P. W. Tse, Y. H. Peng, and R. Yam, “Wavelet Analysis and Envelope Detection for Rolling Element Bearing Fault Diagnosis—Their Effectiveness and Flexibilities,” Journal of Vibration and Acoustics, vol. 123, no. 3, pp. 303-310, Jul. 2001.
[25]D. Yu, J. Cheng, and Y. Yung, “Application of EMD method and Hilbert spectrum to the fault diagnosis of roller bearings”, Mechanical Systems and Signal Processing, vol.19, pp. 259-270, 2005.
[26]H-H. Lee, N-T. Nguyen, and J-M. Kwon, “Bearing diagnosis using time-domain features and decision tree,” Third International Conference on Intelligent Computing, ICIC 2007, Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence, Qingdao, China, Aug. 21-24, 2007, pp. 952-960.
[27]Z. Wang, Q. Zhang, J. Xiong, M. Xiao, G. Sun, and J. He, “Fault Diagnosis of a Rolling Bearing Using Wavelet Packet Denoising and Random Forests,” IEEE Sensors Journal, vol. 17, no. 17, pp. 5581-5588, Sep. 1, 2017.
[28]A. Moosavian, H. Ahmadi, A. Tabatabaeefar, and M. Khazaee, “Comparison of Two Classifiers; K-nearest Neighbor and Artificial Neural Network, for Fault Diagnosis on a Main Engine Journal-bearing,” Shock and Vibration, vol. 20, no. 2, pp. 263-272, Jan. 2013.
[29]L. Ren, Y. Sun, J. Cui, and L. Zhang, “Bearing remaining useful life prediction based on deep autoencoder and deep neural networks,” Journal of Manufacturing Systems, vol. 48, pp. 71-77, Jul. 2018.
[30]Z. Meng, X. Zhan, J. Li, and Z. Pan, “An enhancement denoising autoencoder for rolling bearing fault diagnosis,” Measurement, vol. 130, pp. 448-454, 2018.
[31]Z. Chen and W. Li, “Multisensor Feature Fusion for Bearing Fault Diagnosis Using Sparse Autoencoder and Deep Belief Network,” IEEE Transactions on Instrumentation and Measurement, vol. 66, no. 7, pp. 1693-1702, Jul. 2017.
[32]F. Zhong, T. Shi, and T. He, “Fault diagnosis of motor bearing using self-organizing maps,” 2005 International Conference on Electrical Machines and Systems, Nanjing, China, Sep. 27-29, 2005, pp. 2411-2414.
[33]孫翊淳, 基於類神經網路之狀態監診系統開發及其在工具機刀具狀態診斷之應用, 國立成功大學機械工程學系碩士論文, 2019.[34]曾子航, 高速智慧主軸於加工中之熱誤差分析, 國立成功大學機械工程學系碩士論文, 2019.[35]蔡瑞敏, 多波段微機電加速規整合設計於工具機主軸振動監控應用, 國立成功大學機械工程學系碩士論文, 2018.[36]黃彥享, 應用於工具機主軸監測之數位微機電感測模組整合設計與驗證, 南臺科技大學機械工程系碩士論文, 2020.[37]韓伯炫, 機械手臂動態分析、視覺引導、及感測器網路整合於智慧工廠之應用, 國立成功大學機械工程學系碩士論文, 2020.[38]黃建達, 具任務規劃、人機整合、及狀態監控能力之無人搬運車發展及其於智慧工廠之應用, 國立成功大學機械工程學系碩士論文, 2020.[39]N. De-Laurentis, A. Kadiric, P. Lugt, and P. Cann, “The influence of bearing grease composition on friction in rolling/sliding concentrated contacts,” Tribology International, vol. 94, pp. 624-632, 2016.
[40]Aktiebolaget SKF, “A BRAVE new world for bearings,” skf.com, para. 2, Nov. 6, 2020. [Online]. Available: https://www.skf.com/group/news-and-events/news/2020/2020-11-06-a-brave-new-world-for-bearings. [Accessed Jan. 27, 2021].
[41]Schaeffler Technologies AG & Co. KG, Bearing products. [Online]. Available: https://medias.schaeffler.us. [Accessed Jan. 27, 2021].
[42]A. W. Morgan and D. Wyllie, “A Survey of Rolling-Bearing Failures,” Proceedings of the Institution of Mechanical Engineers, Conference Proceedings, vol. 184, no. 6, pp. 48-56, 1969.
[43]A. Sharma, M. Amarnath, and P. K. Kankar, “Feature extraction and fault severity classification in ball bearings,” Journal of Vibration and Control, vol. 22, no. 1, pp. 176-192, Apr. 2014.
[44]X. Chen, S. Wang, B. Qiao, and Q. Chen, “Basic research on machinery fault diagnostics: Past, present, and future trends,” Frontiers of Mechanical Engineering, vol. 13, pp. 264-291, Jun. 2018.
[45]R. Roy, R. Stark, K. Tracht, S. Takata, and M. Mori, “Continuous maintenance and the future – Foundations and technological challenges,” CIRP Annals, vol. 65, no. 2, pp. 667-688, 2016.
[46]S. Orhan, A. Osman Er, N. Camuşcu, and E. Aslan, “Tool wear evaluation by vibration analysis during end milling of AISI D3 cold work tool steel with 35 HRC hardness,” NDT & E International, vol. 40, no.2, pp. 121-126, Mar. 2007.
[47]J. C. Jáuregui, J. R. Reséndiz, S. Thenozhi, T. Szalay, Á. Jacsó, and M. Takács, “Frequency and Time-Frequency Analysis of Cutting Force and Vibration Signals for Tool Condition Monitoring,” IEEE Access, vol. 6, pp. 6400-6410, Jan. 2018.
[48]E. Ebrahimi, “Fault diagnosis of Spur gear using vibration analysis,” Journal of American Science, vol. 8, no. 1, pp. 133-138, 2012.
[49]X. Chen and Z. Feng, “Time-Frequency Analysis of Torsional Vibration Signals in Resonance Region for Planetary Gearbox Fault Diagnosis Under Variable Speed Conditions,” IEEE Access, vol. 5, pp. 21918-21926, Oct. 2017.
[50]Y. Kong, T. Wang, and F. Chu, “Meshing frequency modulation assisted empirical wavelet transform for fault diagnosis of wind turbine planetary ring gear,” Renewable Energy, vol. 132, pp. 1373-1388, Mar. 2019.
[51]H. Zoubek, S. Villwock, and M. Pacas, “Frequency Response Analysis for Rolling-Bearing Damage Diagnosis,” IEEE Transactions on Industrial Electronics, vol. 55, no. 12, pp. 4270-4276, Dec. 2008.
[52]D. Wu, J. Wang, H. Wang, H. Liu, L. Lai, T. He, and T. Xie, “An Automatic Bearing Fault Diagnosis Method Based on Characteristics Frequency Ratio,” Sensors, vol. 20, no. 5: 1519, Mar. 2020.
[53]M-K. Liu and P-Y. Weng, “Fault Diagnosis of Ball Bearing Elements: A Generic Procedure based on Time-Frequency Analysis,” Measurement Science Review, vol. 19, no. 4, pp. 185-194, Aug. 2019.
[54]B. Sreejith, A. K. Verma, and A. Srividya, “Fault diagnosis of rolling element bearing using time-domain features and neural networks,” 2008 IEEE Region 10 and the Third international Conference on Industrial and Information Systems, Kharagpur, India, Dec. 2008, pp. 1-6.
[55]J. S. Rapur and R. Tiwari, “Experimental Time-Domain Vibration-Based Fault Diagnosis of Centrifugal Pumps Using Support Vector Machine,” ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering, vol. 3, no. 4: 044501, Dec. 2017.
[56]F. Elasha, M. Greaves, D. Mba, and A. Addali, “Application of Acoustic Emission in Diagnostic of Bearing Faults within a Helicopter gearbox,” Procedia CIRP, vol. 38, pp. 30-36, 2015.
[57]J. Park, S. Kim, J-H. Choi, and S. H. Lee, “Frequency energy shift method for bearing fault prognosis using microphone sensor,” Mechanical Systems and Signal Processing, vol. 147, no. 107068, Jan. 2021.
[58]M. Djeddi, P. Granjon, and B. Leprettre, “Bearing Fault Diagnosis in Induction Machine Based on Current Analysis Using High- Resolution Technique,” 2007 IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives, Cracow, Poland, Sep. 2007, pp. 23-28.
[59]T. Praveen Kumar, M. Saimurugan, R. B. Hari Haran, S. Siddharth, and K. I. Ramachandran, “A multi-sensor information fusion for fault diagnosis of a gearbox utilizing discrete wavelet features,” Measurement Science and Technology, vol. 30, no. 8: 085101, Jun. 2019.
[60]Analog Devices Inc., ADXL001 Breakout Board. [Online]. Available: http://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/eval-adxl001.html#eb-overview. [Accessed Feb. 1, 2021].
[61]Instrumentation-Electronics, Microstructure of MEMS Accelerometer. [Online]. Available: http://www.instrumentationtoday.com/mems-accelerometer/2011/08/. [Accessed Feb. 1, 2021].
[62]PCB Piezotronics Inc., Accelerometers/Vibration Sensors. [Online]. Available: http://www.pcb.com/TestMeasurement/Accelerometers. [Accessed Feb. 2, 2021].
[63]Unictron Technologies Corp., Mechanical - Electrical energy transformation in piezoelectric ceramics. [Online]. Available: https://www.unictron.com/piezo/piezoelectric-technologies/. [Accessed Feb. 2, 2021].
[64]MediaCollege.com, Cross-section of condenser microphone. [Online]. Available: https://www.mediacollege.com/audio/microphones/condenser.html. [Accessed Feb. 2, 2021].
[65]Kistler Group, “Acoustic Emission Sensor for high temperature & hazardous areas,” Type 8152C datasheet. [Online]. Available: https://www.kistler.com/files/document/003-120e.pdf?callee=frontend. [Accessed Feb. 2, 2021].
[66]A. Cook, S. Collura, M. Dumont, and T. Urbank, “Continuous Monitoring of Powder Size Distribution using High Temperature ATEX Acoustic Emission Sensors,” 31st Conference of the European Working Group on Acoustic Emission (EWGAE 2014), Dresden, Germany, Sep. 2014.
[67]H. Zou and F. Huang, “A novel intelligent fault diagnosis method for electrical equipment using infrared thermography,” Infrared Physics & Technology, vol. 73, pp. 29-35, Nov. 2015.
[68]R. Pandey, S. Naik, and R. Marfatia, “Image Processing and Machine Learning for Automated Fruit Grading System: A Technical Review,” International Journal of Computer Applications, vol. 81, no. 16, pp. 29-39, Nov. 2013.
[69]T. Kanan, O. Sadaqa, A. Aldajeh, H. Alshwabka, W. AL-dolime, S. AlZu’bi, M. Elbes, B. Hawashin, and M. A. Alia, “A Review of Natural Language Processing and Machine Learning Tools Used to Analyze Arabic Social Media,” 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT), Amman, Jordan, 2019, pp. 622-628.
[70]K. Ikeda, T. Shishid, and S. Viennot, “Machine-Learning of Shape Names for the Game of Go,” Advances in Computer Games, vol. 9525, pp. 247-259, Dec. 2015.
[71]Wikipedia, Overfitting. [Online]. Available: https://en.wikipedia.org/wiki/Overfitting. [Accessed Feb. 18, 2021].
[72]C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol. 8, pp. 279-292, 1992.
[73]A. J. X. Chen, “The Evolution of Computing: AlphaGo,” Computing in Science & Engineering, vol. 18, no. 4, pp. 4-7, Jul.-Aug. 2016.
[74]Y. Ding, L. Ma, J. Ma, M. Suo, L. Tao, Y. Cheng, and C. Lu, “Intelligent fault diagnosis for rotating machinery using deep Q-network based health state classification: A deep reinforcement learning approach,” Advanced Engineering Informatics, vol. 42, no. 100977, Oct. 2019.
[75]Wikipedia, DBSCAN. [Online]. Available: https://en.wikipedia.org/wiki/DBSCAN#/media/File:DBSCAN-Illustration.svg. [Accessed Feb. 19, 2021].
[76]L. Ren, Y. Sun, J. Cui, and L. Zhang, “Bearing remaining useful life prediction based on deep autoencoder and deep neural networks,” Journal of Manufacturing Systems, vol. 48, pp. 71-77, 2018.
[77]X. Zhao, J. Wu, Y. Zhang, Y. Shi, and L. Wang, “Fault Diagnosis of Motor in Frequency Domain Signal by Stacked De-noising Auto-encoder,” Computers, Materials and Continua, vol. 57, no. 2, pp. 223-242, 2018.
[78]J. Wang, S. Li, Y. Xin, and Z. An, “Gear Fault Intelligent Diagnosis Based on Frequency‑Domain Feature Extraction,” Journal of Vibration Engineering & Technologies, vol. 7, pp. 159-166, 2019.