跳到主要內容

臺灣博碩士論文加值系統

(44.222.189.51) 您好!臺灣時間:2024/05/20 14:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳豐吉
研究生(外文):Wu, Feng-Chi
論文名稱:螺旋掃描之電子束熔煉法加熱具自由表面高純度鈷之熔池三維數值分析
論文名稱(外文):Three-dimensional Numerical Analysis on Molten Pool of High-purity Cobalt with Free Surface Heated by Spiral Scanning Type of Electron Beam Melting
指導教授:温昌達
指導教授(外文):Wen, Chang-Da
口試委員:楊天祥何清政
口試委員(外文):Yang, Tian-ShiangHo, Ching-Jenq
口試日期:2021-07-22
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:123
中文關鍵詞:數值模擬螺旋移動電子束熔煉自由表面馬蘭戈尼效應
外文關鍵詞:numerical simulationspiral scanningelectron beam meltingfree surfaceMarangoni effectcobalt
相關次數:
  • 被引用被引用:0
  • 點閱點閱:107
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究將針對小尺度的模型進行電子束熔煉數值計算,並觀察其流場與溫度場之情形。使用商用軟體ANSYS FLUENT建立三維數值模型,加入VOF模型以追蹤鈷與真空兩界面間體積分率的變動,同時考慮馬蘭戈尼效應對流場的影響,以模擬具自由表面之熔煉過程;加熱策略採取電子束螺旋往復掃描鈷表面,同時以水冷銅坩堝對鈷之側邊與底面持續散熱,表面則考慮蒸發熱損失與熱輻射損失。
研究首先探討暫態過程的熔池流場與溫度場之變化情形,結果發現自然對流主導熔煉前期流場,此時熔池發展快速;熱毛細對流則主導中後期流場,此時熔池僅以表面下1 mm以內之寬度有明顯增加。接著與固定表面之模型作對照,顯示本研究的自由表面有較穩定且規律之流場與溫度場變化,而固定表面則無法確實表現出受馬蘭戈尼效應抬升的熔池幾何外型。再來與中心定點熱源做比較,其中心溫度高於螺旋熱源近500 K,表明本研究的加熱策略能大幅減少能量集中,有效減少蒸發熱損失,且能有較大的熔池表面積;缺點則是大幅增加了鈷之上邊緣溫度,以側面邊界散熱損失比例占最大。
In this research, the numerical simulation of electron beam melting is conducted based on the small-scale model. A commercial software is used to build a three-dimensional numerical model, and a VOF model is added to track the volume fraction change at the interface of cobalt and vacuum area, and the influence of the Marangoni effect on the flow field is considered to simulate the melting process with a free surface. A spiral to-and-fro scanning type of electron beam is used to melt of the cobalt surface while dissipating heat from the sides and bottom of the cobalt by the water-cooled copper crucible continually and considering the heat loss through evaporation and radiation on the surface.
The study first discusses the changes in the flow field and temperature field of the molten pool in the transient process of the heating, and then discovers that natural convection dominates the flow field in the early stage of melting. At this moment, the molten pool develops rapidly. In the middle and late stages (close to steady state), thermocapillary convection dominates the flow field. Then, the result of free surface model is compared with fixed surface model, and it turns out that free surface model shows better stable and regular flow field and temperature field changes in this research; however, the fixed surface cannot clearly indicate the geometric shape of the molten pool raised by the Marangoni effect. The following topic compares the spiral heat source with the central fixed-point heat source, and it indicates that the former one's central temperature is nearly 500 K which is lower than the latter one's; in other words, the heating strategy of this study can greatly reduce energy concentration, effectively reduce the heat loss of evaporation, and have a greater surface area of the molten pool.
摘要 i
誌謝 x
目錄 xi
表目錄 xiv
圖目錄 xv
符號說明 xx
第一章 緒論 1
1-1 研究背景 1
1-1.1 真空冶金 1
1-1.2 真空熔煉 2
1-1.3 電子束熔煉 3
1-1.4 高純度金屬 7
1-2 文獻回顧 8
1-2.1 熱源 8
1-2.2 表面張力與馬蘭戈尼效應 10
1-2.3 電子束熔煉 12
1-2.4 其他 13
1-3 研究動機與目的 14
1-4 全文架構 15
第二章 基礎理論介紹 16
2-1 電子束熔煉基本原理 16
2-1.1 電子槍之工作原理 16
2-1.2 電子束加熱原理 18
2-1.3 電子束能量之損失 19
2-2 數值模擬金屬熔池 21
2-2.1 直線移動電子束熱源 23
2-2.2 螺旋移動電子束熱源 24
2-2.3 相變化 27
2-2.4 熱輻射損失 32
2-2.5 蒸發熱損失 32
2-2.6 表面張力梯度 34
2-2.7 無因次數 36
第三章 數值分析 38
3-1 物理模型 38
3-1.1 基本假設 38
3-1.2 統御方程式 40
3-1.3 初始條件與邊界條件 42
3-2 數值模擬分析方法 47
3-2.1 PISO 48
3-2.2 VOF模型 50
3-3 純鈷之熱物理性質 52
3-3.1 蒸氣壓與蒸發通量 53
3-3.2 其他常見熱物理性質 60
3-4 數值模擬設定與流程 65
3-5 物理模型測試 68
3-5.1 網格獨立測試 68
3-5.2 時間步伐測試 74
3-6 驗證 74
第四章 結果與討論 80
4-1 初步計算結果 80
4-2 計算模型比較:固定表面與自由表面 89
4-3 加熱策略比較:固定熱源與螺旋熱源 93
4-4 調整電子束熔煉之參數設定 103
4-4.1 調整電子束束斑半徑與功率之影響 103
4-4.2 調整電子束熱源移動速度之影響 107
4-4.3 調整電子束螺旋移動間距之影響 107
4-4.4 調整電子束移動距中心最遠距離之影響 110
第五章 結論與未來工作 114
5-1 結論 114
5-2 未來工作 115
參考文獻 116
[1]R. J. Browne, "A review of the fundamentals of vacuum metallurgy," Vacuum, vol. 21, pp. 13-16, 1971.
[2]Y. Zhao, K. Aoyagi, K. Yamanaka, and A. Chiba, "Role of operating and environmental conditions in determining molten pool dynamics during electron beam melting and selective laser melting," Additive Manufacturing, vol. 36, p. 101559, 2020.
[3]D. C. Jiang, Y. Tan, S. Shi, Q. Xu, W. Dong, Z. Gu, et al., "Research on new method of electron beam candle melting used for removal of P from molten Si," Materials Research Innovations, vol. 15, pp. 406-409, Nov 2011.
[4]J. Gruber, J. Heitz, N. Arnold, D. Bäuerle, N. Ramaseder, W. Meyer, et al., "In situ analysis of metal melts in metallurgic vacuum devices by laser-induced breakdown spectroscopy," Applied spectroscopy, vol. 58, pp. 457-462, 2004.
[5]J. Otubo, O. Rigo, C. M. Neto, and P. Mei, "The effects of vacuum induction melting and electron beam melting techniques on the purity of NiTi shape memory alloys," Materials Science and Engineering: A, vol. 438, pp. 679-682, 2006.
[6]G.-S. Choi, J.-W. Lim, N. Munirathnam, I.-H. Kim, and J.-S. Kim, "Preparation of 5N grade tantalum by electron beam melting," Journal of alloys and compounds, vol. 469, pp. 298-303, 2009.
[7]S. Shi, P. Li, J. Meng, D. Jiang, and Y. Tan, "Kinetics of volatile impurity removal from silicon by electron beam melting for photovoltaic applications," Physical Chemistry Chemical Physics, vol. 19, pp. 28424-28433, 2017.
[8]H. Liu, S. Shi, Q. You, L. Zhao, and Y. Tan, "Analysis on elemental volatilization behavior of titanium alloys during electron beam smelting," Vacuum, vol. 157, pp. 395-401, 2018.
[9]W. G. Pfann, "Zone melting," 1966.
[10]K. Vutova, V. Vassileva, E. Koleva, N. Munirathnam, D. P. Amalnerkar, and T. Tanaka, "Investigation of Tantalum Recycling by Electron Beam Melting," Metals, vol. 6, p. 287, 2016.
[11]A. Choudhury and E. Hengsberger, "Electron beam melting and refining of metals and alloys," ISIJ international, vol. 32, pp. 673-681, 1992.
[12]J.-M. Oh, B.-K. Lee, H.-K. Park, and J.-W. Lim, "Preparation and purity evaluation of 5N-grade ruthenium by electron beam melting," Materials transactions, vol. 53, pp. 1680-1684, 2012.
[13]J. Oh, B. Lee, G. Choi, H. Kim, and J. Lim, "Preparation of ultrahigh purity cylindrical tantalum ingot by electron beam drip melting without sintering process," Materials Science and Technology, vol. 29, pp. 542-546, 2013.
[14]R. Hung, J. H. Park, T. H. Ha, M. Lee, W. Hou, J. Lei, et al., "Extreme contact scaling with advanced metallization of cobalt," in 2018 IEEE International Interconnect Technology Conference (IITC), 2018, pp. 30-32.
[15]J. Goldak, A. Chakravarti, and M. Bibby, "A New Finite-Element Model for Welding Heat-Sources," Metallurgical Transactions B-Process Metallurgy, vol. 15, pp. 299-305, 1984.
[16]L. H. Huang, "Three-Dimensional Numerical Simulation of Molten Pool of High Purity Cobalt Heated by Spiral Scanning Type of Electron Beam Melting," MS, Department of Mechanical Engineering, National Cheng Kung University, 2017.
[17]J. C. Heigel, P. Michaleris, and E. W. Reutzel, "Thermo-mechanical model development and validation of directed energy deposition additive manufacturing of Ti–6Al–4V," Additive manufacturing, vol. 5, pp. 9-19, 2015.
[18]S.-H. Choi, B.-Y. Jang, J.-S. Lee, Y.-S. Ahn, W.-Y. Yoon, and J.-H. Joo, "Effects of electron beam patterns on melting and refining of silicon for photovoltaic applications," Renewable energy, vol. 54, pp. 40-45, 2013.
[19]L. Han, F. W. Liou, and S. Musti, "Thermal behavior and geometry model of melt pool in laser material process," 2005.
[20]P. D. Lee, P. N. Quested, and M. McLean, "Modelling of Marangoni effects in electron beam melting," Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, vol. 356, pp. 1027-1043, Apr 15 1998.
[21]W. J. Yao, X. J. Han, M. Chen, B. Wei, and Z. Y. Guo, "Surface tension of undercooled liquid cobalt," Journal of Physics: Condensed Matter, vol. 14, p. 7479, 2002.
[22]D. Casenave, R. Gauthier, and P. Pinard, "A study of the purification process during the elaboration by electron bombardment of polysilicon ribbons designed for photovoltaic conversion," Solar Energy Materials, vol. 5, pp. 417-423, 1981.
[23]T. Ikeda and M. Maeda, "Purification of metallurgical silicon for solar-grade silicon by electron beam button melting," ISIJ international, vol. 32, pp. 635-642, 1992.
[24]A. Powell, J. Van den Avyle, B. Damkroger, J. Szekely, and U. Pal, "Analysis of multicomponent evaporation in electron beam melting and refining of titanium alloys," Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science, vol. 28, pp. 1227-1239, Dec 1997.
[25]D. Jiang, Y. Tan, S. Shi, W. Dong, Z. Gu, and R. Zou, "Removal of phosphorus in molten silicon by electron beam candle melting," Materials Letters, vol. 78, pp. 4-7, 2012.
[26]J. Y. Zhang, "Numerical Analysis on Molten Pool of High Purity Cobalt with Free Surface by Electron Beam Melting," MS, Department of Mechanical Engineering, National Cheng Kung University, 2018.
[27]V. R. Voller and C. Prakash, "A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems," International Journal of Heat and Mass Transfer, vol. 30, pp. 1709-1719, 1987.
[28]A. Gilmour, Principles of traveling wave tubes: Artech House, 1994.
[29]D. W. Tripp, "Modelling power transfer in electron beam heating of cylinders," University of British Columbia, 1994.
[30]X.-H. LIU, C.-H. XU, and X.-F. ZHENG, 真空熔煉: 化學工業出版社, 2013.
[31]P. Michaleris, "Modeling metal deposition in heat transfer analyses of additive manufacturing processes," Finite Elements in Analysis and Design, vol. 86, pp. 51-60, Sep 2014.
[32]P. Lacki and K. Adamus, "Numerical simulation of the electron beam welding process," Computers & Structures, vol. 89, pp. 977-985, 2011.
[33]I. A. Mahmood, S. O. R. Moheimani, and B. Bhikkaji, "A New Scanning Method for Fast Atomic Force Microscopy," Ieee Transactions on Nanotechnology, vol. 10, pp. 203-216, Mar 2011.
[34]朱先承, "矩形潛熱式熱控制裝置之熔解熱傳研究," PhD, Department of Mechanical Engineering, National Cheng Kung University, 1994.
[35]A. Fluent, "Ansys fluent theory guide," ANSYS Inc., USA, vol. 15317, 2011.
[36]Y. Tan, S. T. Wen, S. Shi, D. C. Jiang, W. Dong, and X. L. Guo, "Numerical simulation for parameter optimization of silicon purification by electron beam melting," Vacuum, vol. 95, pp. 18-24, Sep 2013.
[37]B. V. L'vov, Thermal decomposition of solids and melts: new thermochemical approach to the mechanism, kinetics and methodology vol. 7: Springer Science & Business Media, 2007.
[38]J. P. Bellot, E. Hess, and D. Ablitzer, "Aluminum volatilization and inclusion removal in the electron beam cold hearth melting of Ti alloys," Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science, vol. 31, pp. 845-854, Aug 2000.
[39]T. Zhang, Z. Y. Shang, M. Chen, J. J. He, B. G. Lv, X. Q. Wang, et al., "High-Purity Nickel Prepared by Electron Beam Melting: Purification Mechanism," Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science, vol. 45, pp. 164-174, Feb 2014.
[40]Y. Tan, X. L. Guo, S. Shi, W. Dong, and D. C. Jiang, "Study on the removal process of phosphorus from silicon by electron beam melting," Vacuum, vol. 93, pp. 65-70, Jul 2013.
[41]J. Safarian and T. A. Engh, "Vacuum evaporation of pure metals," Metallurgical and Materials Transactions A, vol. 44, pp. 747-753, 2013.
[42]C. B. Alcock, V. P. Itkin, and M. K. Horrigan, "Vapour pressure equations for the metallic elements: 298–2500K," Canadian Metallurgical Quarterly, vol. 23, pp. 309-313, 1984.
[43]S. Lu, H. Fujii, and K. Nogi, "Marangoni convection and gas tungsten arc weld shape variations on pure iron plates," Isij International, vol. 46, pp. 276-280, 2006.
[44]Z. Zhang, "Modeling of al evaporation and marangoni flow in electron beam button melting of ti-6al-4v," University of British Columbia, 2013.
[45]X. J. Han, N. Wang, and B. Wei, "Thermophysical properties of undercooled liquid cobalt," Philosophical magazine letters, vol. 82, pp. 451-459, 2002.
[46]R. Sampath and N. Zabaras, "Numerical study of convection in the directional solidification of a binary alloy driven by the combined action of buoyancy, surface tension, and electromagnetic forces," Journal of Computational Physics, vol. 168, pp. 384-411, 2001.
[47]W. H. Hager, "Wilfrid noel bond and the bond number," Journal of Hydraulic Research, vol. 50, pp. 3-9, 2012.
[48]K. Westerberg, M. McClelland, and B. Finlayson, "Finite element analysis of flow, heat transfer, and free interfaces in an electron‐beam vaporization system for metals," International journal for numerical methods in fluids, vol. 26, pp. 637-655, 1998.
[49]D. Dai and D. Gu, "Thermal behavior and densification mechanism during selective laser melting of copper matrix composites: simulation and experiments," Materials & Design, vol. 55, pp. 482-491, 2014.
[50]R. E. Honig, Vapor pressure data for the more common elements: David Sarnoff Research Center, 1957.
[51]J. W. Edwards, H. L. Johnston, and W. E. Ditmars, "The Vapor Pressures of Inorganic Substances. VII. Iron Between 1356° K. and 1519° K. and Cobalt Between 1363° K. and 1522° K," Journal of the American Chemical Society, vol. 73, pp. 4729-4732, 1951.
[52]K. Thurnay, "Thermal properties of transition metals," Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer …1998.
[53]M. J. Assael, I. J. Armyra, J. Brillo, S. V. Stankus, J. Wu, and W. A. Wakeham, "Reference data for the density and viscosity of liquid cadmium, cobalt, gallium, indium, mercury, silicon, thallium, and zinc," Journal of Physical and Chemical Reference Data, vol. 41, p. 033101, 2012.
[54]M. Laubitz and T. Matsumura, "Transport properties of the ferromagnetic metals. i. cobalt," Canadian Journal of Physics, vol. 51, pp. 1247-1256, 1973.
[55]C. Y. Ho, R. W. Powell, and P. E. Liley, "Thermal conductivity of the elements: a comprehensive review," National Standard Reference Data System1974.
[56]M. J. Assael, K. Antoniadis, W. A. Wakeham, M. L. Huber, and H. Fukuyama, "Reference Correlations for the Thermal Conductivity of Liquid Bismuth, Cobalt, Germanium, and Silicon," Journal of physical and chemical reference data, vol. 46, p. 033101, 2017.
[57]A. S. Normanton, "A Calorimetric Study of High-Purity Cobalt from 600 to 1600 K," Metal Science, vol. 9, pp. 455-458, 1975.
[58]M. W. Chase Jr, "NIST-JANAF thermochemical tables," J. Phys. Chem. Ref. Data, Monograph, vol. 9, 1998.
[59]C. L. Yaws, Yaws' handbook of properties of the chemical elements: Knovel, 2011.
[60]D. R. Lide, CRC handbook of chemistry and physics vol. 85: CRC press, 2004.
[61]M. V. Schweiz, "Table of Emissivity of various surfaces," Schaffhausen: Mikron Instrument, nd Print, 2012.
[62]S. Jain, V. Narayan, and T. Goel, "Thermal conductivity of metals at high temperatures by the Jain and Krishnan method II. Cobalt," Journal of Physics D: Applied Physics, vol. 2, p. 101, 1969.
[63]K. Vutova and V. Donchev, "Electron beam melting and refining of metals: Computational modeling and optimization," Materials, vol. 6, pp. 4626-4640, 2013.
[64]M. J. Assael, A. E. Kalyva, K. D. Antoniadis, R. Michael Banish, I. Egry, J. Wu, et al., "Reference data for the density and viscosity of liquid copper and liquid tin," Journal of Physical and Chemical Reference Data, vol. 39, p. 033105, 2010.
[65]H. Sasaki, Y. Kobashi, T. Nagai, and M. Maeda, "Application of electron beam melting to the removal of phosphorus from silicon: toward production of solar-grade silicon by metallurgical processes," Advances in Materials Science and Engineering, vol. 2013, 2013.
[66]T. Zhang, Z. Shang, M. Chen, J. He, B. Lv, X. Wang, et al., "High-purity nickel prepared by electron beam melting: Purification mechanism," Metallurgical and Materials Transactions B, vol. 45, pp. 164-174, 2014.
電子全文 電子全文(網際網路公開日期:20260817)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊