|
Baeye, M., Quinn, R., Deleu, S., & Fettweis, M. (2016). Detection of shipwrecks in ocean colour satellite imagery. Journal of Archaeological Science, 66, 1-6. doi:10.1016/j.jas.2015.11.006 Bulgarelli, B., Kiselev, V., & Zibordi, G. (2014). Simulation and analysis of adjacency effects in coastal waters: a case study. Applied Optics, 53(8), 1523-1545. Retrieved from http://ao.osa.org/abstract.cfm?URI=ao-53-8-1523. doi:10.1364/AO.53.001523 Carlson, R. (1977). A Trophic State Index for Lakes. Limnology and Oceanography - LIMNOL OCEANOGR, 22, 361-369. doi:10.4319/lo.1977.22.2.0361 Chang, C. H., Cai, L. Y., Lin, T. F., Chung, C. L., van der Linden, L., & Burch, M. (2015). Assessment of the Impacts of Climate Change on the Water Quality of a Small Deep Reservoir in a Humid-Subtropical Climatic Region. Water, 7(4), 1687-1711. Retrieved from ://WOS:000353715100020. doi:10.3390/w7041687 Chang, C. H., Liu, C. C., Wen, C. G., Cheng, I. F., Tam, C. K., & Huang, C. S. (2009). Monitoring reservoir water quality with Formosat-2 high spatiotemporal imagery. Journal of Environmental Monitoring, 11(11), 1982-1992. Retrieved from ://WOS:000271476600009. doi:10.1039/b912897b Chang, K. W., Shen, Y., & Chen, P. C. (2004). Predicting algal bloom in the Techi reservoir using Landsat TM data. International Journal of Remote Sensing, 25(17), 3411-3422. Retrieved from https://doi.org/10.1080/01431160310001620786. doi:10.1080/01431160310001620786 Chang, N.-B., Wen, C. G., & Wu, S. L. (1995). Optimal Management of Environmental and Land Resources in a Reservoir Watershed by Multiobjective Programming. Journal of Environmental Management, 44(2), 144-161. Retrieved from https://www.sciencedirect.com/science/article/pii/S0301479785700369. doi:https://doi.org/10.1006/jema.1995.0036 Chang, S. P., & Chuang, S. M. (2001). Eutrophication study of twenty reservoirs in Taiwan. Water Sci Technol, 44(6), 19-26. Chawira, M., Dube, T., & Gumindoga, W. (2013). Remote sensing based water quality monitoring in Chivero and Manyame lakes of Zimbabwe. Physics and Chemistry of the Earth, 66, 38-44. Retrieved from ://WOS:000328927500006. doi:10.1016/j.pce.2013.09.003 Chen, L., Tan, C.-H., Kao, S.-J., & Wang, T.-S. (2008). Improvement of remote monitoring on water quality in a subtropical reservoir by incorporating grammatical evolution with parallel genetic algorithms into satellite imagery. Water Research, 42(1), 296-306. Retrieved from https://www.sciencedirect.com/science/article/pii/S0043135407004733. doi:https://doi.org/10.1016/j.watres.2007.07.014 Cheng, G., Han, J., & Lu, X. (2017). Remote Sensing Image Scene Classification: Benchmark and State of the Art. Proceedings of the IEEE, 105(10), 1865-1883. doi:10.1109/JPROC.2017.2675998 Cheng, K.-S., & Lei, T. C. (2001). Reservoir trophic state evaluation using Landsat TM images. JAWRA Journal of the American Water Resources Association, 37, 1321-1334. doi:10.1111/j.1752-1688.2001.tb03642.x Chu, H.-J., Liu, C.-Y., & Wang, C.-K. (2013). Identifying the Relationships between Water Quality and Land Cover Changes in the Tseng-Wen Reservoir Watershed of Taiwan. International journal of environmental research and public health, 10, 478-489. doi:10.3390/ijerph10020478 Cunha, D. G. F., & Calijuri, M. D. (2011). Limiting factors for phytoplankton growth in subtropical reservoirs: the effect of light and nutrient availability in different longitudinal compartments. Lake and Reservoir Management, 27(2), 162-172. Retrieved from ://WOS:000291853900006. doi:10.1080/07438141.2011.574974 Dörnhöfer, K., Klinger, P., Heege, T., & Oppelt, N. (2018). Multi-sensor satellite and in situ monitoring of phytoplankton development in a eutrophic-mesotrophic lake. Science of The Total Environment, 612, 1200-1214. Retrieved from https://www.sciencedirect.com/science/article/pii/S0048969717322179. doi:https://doi.org/10.1016/j.scitotenv.2017.08.219 Dogliotti, A. I., Ruddick, K. G., Nechad, B., Doxaran, D., & Knaeps, E. (2015). A single algorithm to retrieve turbidity from remotely-sensed data in all coastal and estuarine waters. Remote Sensing of Environment, 156, 157-168. Retrieved from https://www.sciencedirect.com/science/article/pii/S0034425714003654. doi:https://doi.org/10.1016/j.rse.2014.09.020 Doi, H., Akamatsu, Y., Watanabe, Y., Goto, M., Inui, R., Katano, I., . . . Minamoto, T. (2017). Water sampling for environmental DNA surveys by using an unmanned aerial vehicle. Limnology and Oceanography: Methods, 15(11), 939-944. Retrieved from https://aslopubs.onlinelibrary.wiley.com/doi/abs/10.1002/lom3.10214. doi:https://doi.org/10.1002/lom3.10214 Evans, D. M., Schoenholtz, S. H., Wigington, P. J., Jr., Griffith, S. M., & Floyd, W. C. (2014). Spatial and temporal patterns of dissolved nitrogen and phosphorus in surface waters of a multi-land use basin. Environ Monit Assess, 186(2), 873-887. doi:10.1007/s10661-013-3428-4 Feaster, L., Poli, C., & Kirchhoff, R. (1977). Dynamics of a slung load. Journal of Aircraft, 14(2), 115-121. Retrieved from https://arc.aiaa.org/doi/abs/10.2514/3.44578. doi:10.2514/3.44578 Feng, M., & Shen, Z. (2021). Assessment of the Impacts of Land Use Change on Non-Point Source Loading under Future Climate Scenarios Using the SWAT Model. Water, 13, 874. doi:10.3390/w13060874 Franz, B. A., Bailey, S. W., Kuring, N., & Werdell, P. J. (2015). Ocean color measurements with the Operational Land Imager on Landsat-8: implementation and evaluation in SeaDAS. Journal of Applied Remote Sensing, 9(1), 096070. Gernez, P., Doxaran, D., & Barillé, L. (2017). Shellfish Aquaculture from Space: Potential of Sentinel2 to Monitor Tide-Driven Changes in Turbidity, Chlorophyll Concentration and Oyster Physiological Response at the Scale of an Oyster Farm. Frontiers in Marine Science, 4(137). Retrieved from https://www.frontiersin.org/article/10.3389/fmars.2017.00137. doi:10.3389/fmars.2017.00137 Gianesella-Galvão, S. M. F. (1985). Primary production in ten reservoirs in southern Brazil. Hydrobiologia, 122(1), 81-88. Retrieved from https://doi.org/10.1007/BF00018962. doi:10.1007/BF00018962 Gibson, P., Gibson, P. J., Power, C., & Power, C. H. (2000). Introductory Remote Sensing: Digital Image Processing and Applications: Routledge. Gippel, C. (1995). Environmental Hydraulics of Large Woody Debris in Streams and Rivers. Journal of Environmental Engineering-asce - J ENVIRON ENG-ASCE, 121. doi:10.1061/(ASCE)0733-9372(1995)121:5(388) Gordon, H. R., & Castaño, D. J. (1987). Coastal Zone Color Scanner atmospheric correction algorithm: multiple scattering effects. Applied Optics, 26(11), 2111-2122. Retrieved from http://ao.osa.org/abstract.cfm?URI=ao-26-11-2111. doi:10.1364/AO.26.002111 Guo, H., Goodchild, M. F., & Annoni, A. (2020). Manual of Digital Earthnull: Springer Nature. Hestir, E. L., Brando, V. E., Bresciani, M., Giardino, C., Matta, E., Villa, P., & Dekker, A. G. (2015). Measuring freshwater aquatic ecosystems: The need for a hyperspectral global mapping satellite mission. Remote Sensing of Environment, 167, 181-195. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-84938999023&doi=10.1016%2fj.rse.2015.05.023&partnerID=40&md5=461c7059f3e646606e99a53fb6fbb16f. doi:10.1016/j.rse.2015.05.023 Hu, C., Muller-Karger, F. E., Biggs, D. C., Carder, K. L., Nababan, B., Nadeau, D., & Vanderbloemen, J. (2003). Comparison of ship and satellite bio-optical measurements on the continental margin of the NE Gulf of Mexico. International Journal of Remote Sensing, 24(13), 2597-2612. Retrieved from https://doi.org/10.1080/0143116031000067007. doi:10.1080/0143116031000067007 Huszar, V. (2006). Nutrient–chlorophyll relationships in tropical– subtropical lakes: do temperate models fit? Biogeochemistry, 79, 239. doi:10.1007/s10533-006-9007-9 Jackson, R. B., Carpenter, S. R., Dahm, C. N., McKnight, D. M., Naiman, R. J., Postel, S. L., & Running, S. W. (2001). Water in a changing world. Ecological Applications, 11(4), 1027-1045. Retrieved from ://WOS:000170209200008. doi:10.1890/1051-0761(2001)011[1027:Wiacw]2.0.Co;2 Kutser, T. (2004). Quantitative detection of chlorophyll in cyanobacterial blooms by satellite remote sensing. Limnology and Oceanography, 49(6), 2179-2189. Retrieved from https://aslopubs.onlinelibrary.wiley.com/doi/abs/10.4319/lo.2004.49.6.2179. doi:https://doi.org/10.4319/lo.2004.49.6.2179 Lee, Z. P., Shang, S. L., Hu, C. M., Du, K. P., Weidemann, A., Hou, W. L., . . . Lin, G. (2015). Secchi disk depth: A new theory and mechanistic model for underwater visibility. Remote Sensing of Environment, 169, 139-149. Retrieved from ://WOS:000363815900010. doi:10.1016/j.rse.2015.08.002 Lewis Jr, W. M. (2000). Basis for the protection and management of tropical lakes. Lakes & Reservoirs: Science, Policy and Management for Sustainable Use, 5(1), 35-48. Retrieved from https://doi.org/10.1046/j.1440-1770.2000.00091.x. doi:https://doi.org/10.1046/j.1440-1770.2000.00091.x Lillesand, T., Kiefer, R., & Chipman, J. (2004). Remote Sensing and Image Interpretation (Fifth Edition) (Vol. 146). Lin, T.-C., Shaner, P.-J., Wang, L. J., Shih, Y.-t., Wang, C.-P., Huang, G. H., & Huang, J.-C. (2015). Effects of mountain tea plantations on nutrient cycling at upstream watersheds. Hydrology and Earth System Sciences, 19, 4493-4504. doi:10.5194/hess-19-4493-2015 Liu, C. C., Nakamura, R., Ko, M. H., Matsuo, T., Kato, S., Yin, H. Y., & Huang, C. S. (2017). Near Real-Time Browsable Landsat-8 Imagery. Remote Sensing, 9(1), 13. Retrieved from ://WOS:000395492600078. doi:10.3390/rs9010079 Mishra, S., & Mishra, D. R. (2012). Normalized difference chlorophyll index: A novel model for remote estimation of chlorophyll-a concentration in turbid productive waters. Remote sensing of environment., 117, 394-406. Retrieved from http://europepmc.org/abstract/AGR/IND600875842 https://doi.org/10.1016/j.rse.2011.10.016. doi:10.1016/j.rse.2011.10.016 Morel, A., & Prieur, L. (1977). Analysis of variations in ocean color1. Limnology and Oceanography, 22(4), 709-722. Retrieved from https://aslopubs.onlinelibrary.wiley.com/doi/abs/10.4319/lo.1977.22.4.0709. doi:https://doi.org/10.4319/lo.1977.22.4.0709 Nechad, B., Ruddick, K., & Neukermans, G. (2009). Calibration and validation of a generic multisensor algorithm for mapping of turbidity in coastal waters (Vol. 7473): SPIE. Nechad, B., Ruddick, K. G., & Park, Y. (2010). Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters. Remote Sensing of Environment, 114(4), 854-866. Retrieved from ://WOS:000274982700014. doi:10.1016/j.rse.2009.11.022 Nguyen, H. H., Recknagel, F., Meyer, W., Frizenschaf, J., Ying, H., & Gibbs, M. S. (2019). Comparison of the alternative models SOURCE and SWAT for predicting catchment streamflow, sediment and nutrient loads under the effect of land use changes. Sci Total Environ, 662, 254-265. doi:10.1016/j.scitotenv.2019.01.286 O'Reilly, J. E., Aeronautics, U. S. N., & Administration, S. (2000). SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3: NASA Center for AeroSpace Information. Olem, H., & Flock, G. (1990). Lake and Reservoir Restoration Guidance Manual : Second Edition. doi:https://doi.org/doi:10.7282/T3JD4WCD Olmanson, L. G., Brezonik, P. L., & Bauer, M. E. (2011). Evaluation of medium to low resolution satellite imagery for regional lake water quality assessments. Water Resources Research, 47(9). Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011WR011005. doi:https://doi.org/10.1029/2011WR011005 Olmanson, L. G., Brezonik, P. L., & Bauer, M. E. (2015). Remote Sensing for Regional Lake Water Quality Assessment: Capabilities and Limitations of Current and Upcoming Satellite Systems. In T. Younos & T. E. Parece (Eds.), Advances in Watershed Science and Assessment (pp. 111-140). Cham: Springer International Publishing. Ouyang, W., Hao, F. H., Wang, X. L., & Cheng, H. G. (2008). Nonpoint source pollution responses simulation for conversion cropland to forest in mountains by SWAT in China. Environ Manage, 41(1), 79-89. doi:10.1007/s00267-007-9028-8 Pahlevan, N., & Schott, J. R. (2013). Leveraging EO-1 to Evaluate Capability of New Generation of Landsat Sensors for Coastal/Inland Water Studies. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(2), 360-374. doi:10.1109/JSTARS.2012.2235174 Pahlevan, N., Schott, J. R., Franz, B. A., Zibordi, G., Markham, B., Bailey, S., . . . Strait, C. M. (2017). Landsat 8 remote sensing reflectance (Rrs) products: Evaluations, intercomparisons, and enhancements. Remote Sensing of Environment, 190, 289-301. Pahlevan, N., Wei, J., Schaaf, C. B., & Schott, J. R. (2014, 13-18 July 2014). Evaluating radiometric sensitivity of Landsat 8 over coastal/inland waters. Paper presented at the 2014 IEEE Geoscience and Remote Sensing Symposium. Pahlow, M., & Oschlies, A. (2009). Chain model of phytoplankton P, N and light colimitation. Marine Ecology Progress Series, 376, 69-83. Retrieved from https://www.int-res.com/abstracts/meps/v376/p69-83/. Phiri, D., Simwanda, M., Salekin, S., Nyirenda, V. R., Murayama, Y., & Ranagalage, M. (2020). Sentinel-2 Data for Land Cover/Use Mapping: A Review. Remote Sensing, 12(14), 2291. Retrieved from https://www.mdpi.com/2072-4292/12/14/2291. Portney, L. G., & Watkins, M. P. (2000). Foundations of Clinical Research: Applications to Practice: Prentice Hall Health. Shyu, G.-S., Cheng, B.-Y., & Fang, W.-T. (2012). The Effect of Developing a Tunnel across a Highway on the Water Quality in an Upstream Reservoir Watershed Area—A Case Study of the Hsuehshan Tunnel in Taiwan. International journal of environmental research and public health, 9, 3344-3353. doi:10.3390/ijerph9093344 Su, T.-C. (2017). A study of a matching pixel by pixel (MPP) algorithm to establish an empirical model of water quality mapping, as based on unmanned aerial vehicle (UAV) images. International Journal of Applied Earth Observation and Geoinformation, 58, 213-224. Retrieved from https://www.sciencedirect.com/science/article/pii/S0303243417300375. doi:https://doi.org/10.1016/j.jag.2017.02.011 Su, T.-C., & Chou, H.-T. (2015). Application of Multispectral Sensors Carried on Unmanned Aerial Vehicle (UAV) to Trophic State Mapping of Small Reservoirs: A Case Study of Tain-Pu Reservoir in Kinmen, Taiwan. Remote Sensing, 7(8), 10078-10097. Retrieved from https://www.mdpi.com/2072-4292/7/8/10078. Thornton, K. W., Kimmel, B. L., & Payne, F. E. (1990). Reservoir limnology : ecological perspectives. New York: Wiley. van Breemen, N., Burrough, P. A., Velthorst, E. J., van Dobben, H. F., de Wit, T., Ridder, T. B., & Reijnders, H. F. R. (1982). Soil acidification from atmospheric ammonium sulphate in forest canopy throughfall. Nature, 299(5883), 548-550. Retrieved from https://doi.org/10.1038/299548a0. doi:10.1038/299548a0 Vanhellemont, Q., & Ruddick, K. (2014). Turbid wakes associated with offshore wind turbines observed with Landsat 8. Remote Sensing of Environment, 145, 105-115. Retrieved from ://WOS:000335113200010. doi:10.1016/j.rse.2014.01.009 Vanhellemont, Q., & Ruddick, K. (2015). Advantages of high quality SWIR bands for ocean colour processing: Examples from Landsat-8. Remote Sensing of Environment, 161, 89-106. Retrieved from ://WOS:000351654500007. doi:10.1016/j.rse.2015.02.007 Vanhellemont, Q., & Ruddick, K. (2021). Atmospheric correction of Sentinel-3/OLCI data for mapping of suspended particulate matter and chlorophyll-a concentration in Belgian turbid coastal waters. Remote Sensing of Environment, 256, 112284. Retrieved from https://www.sciencedirect.com/science/article/pii/S003442572100002X. doi:https://doi.org/10.1016/j.rse.2021.112284 Wang, D., Ronghua, M., Xue, K., & Li, J. (2019). Improved atmospheric correction algorithm for Landsat 8–OLI data in turbid waters: a case study for the Lake Taihu, China. Optics Express, 27(20), A1400-A1418. Retrieved from http://www.opticsexpress.org/abstract.cfm?URI=oe-27-20-A1400. doi:10.1364/OE.27.0A1400 Woodcock, C., Allen, R., Anderson, M., Belward, A., Bindschadler, R., Cohen, W., . . . Wynne, R. (2008). Free Access to Landsat Imagery. Science (New York, N.Y.), 320, 1011. doi:10.1126/science.320.5879.1011a World Health, O. (2017). Water quality and health - review of turbidity: information for regulators and water suppliers. Retrieved from Geneva: https://apps.who.int/iris/handle/10665/254631 Xu, Z. X., Pang, J. P., Liu, C. M., & Li, J. Y. (2009). Assessment of runoff and sediment yield in the Miyun Reservoir catchment by using SWAT model. Hydrological Processes, 23(25), 3619-3630. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1002/hyp.7475. doi:https://doi.org/10.1002/hyp.7475 Yang, M. D., Sykes, R. M., & Merry, C. J. (2000). Estimation of algal biological parameters using water quality modeling and SPOT satellite data. Ecological Modelling, 125(1), 1-13. Retrieved from https://www.sciencedirect.com/science/article/pii/S0304380099000654. doi:https://doi.org/10.1016/S0304-3800(99)00065-4 Yip, H. D., Johansson, J., & Hudson, J. J. (2015). A 29-year assessment of the water clarity and chlorophyll-a concentration of a large reservoir: Investigating spatial and temporal changes using Landsat imagery. Journal of Great Lakes Research, 41, 34-44. Retrieved from ://WOS:000367359900004. doi:10.1016/j.jglr.2014.11.022 Zilberg, B. (1966). Gastroenteritis in Salisbury. European children--a five-year study. Cent Afr J Med, 12(9), 164-168. 王鑫. (1986). 遙測研習班講義 (初版 ed.): [出版者不詳]. 行政院環境保護署. (2020). 民國108年環境水質監測年報. Retrieved from file:///C:/Users/Win10/Downloads/2019%E5%B9%B4%E7%92%B0%E5%A2%83%E6%B0%B4%E8%B3%AA%E7%9B%A3%E6%B8%AC%E5%B9%B4%E5%A0%B1%20(3).pdf 張智華. (2008). 非點源污染負荷模式及水質生光模式之結合與應用. (博士), 國立成功大學, 台南市. Retrieved from https://hdl.handle.net/11296/rvu92z 黃兆慧. (2002). 台灣的水庫: 遠足文化事業有限公司. 經濟部水利署. (2019). 2019年台灣水文環境情勢專刊. 雷祖强. (2006). 遙感探測理論與分析實務: 文魁資訊股份有限公司.
|
| |