Adams, C., Wang, Y., Loftin, K., & Meyer, M. (2002). Removal of antibiotics from surface and distilled water in conventional water treatment processes. Journal of environmental engineering, 128(3), 253-260.
Azqueta, A., Arbillaga, L., Pachón, G., Cascante, M., Creppy, E. E., & de Cerain, A. L. (2007). A quinoxaline 1, 4-di-N-oxide derivative induces DNA oxidative damage not attenuated by vitamin C and E treatment. Chemico-biological interactions, 168(2), 95-105.
Baars, A., Jager, L., Spierenberg, T. J., De Graaf, G., & Seinhorst, J. (1991). Residues of carbadox metabolites in edible pork products. In Recent Developments in Toxicology: Trends, Methods and Problems (pp. 288-292): Springer.
Bearson, B. L., Allen, H. K., Brunelle, B. W., Lee, I. S., Casjens, S. R., & Stanton, T. B. (2014). The agricultural antibiotic carbadox induces phage-mediated gene transfer in Salmonella. Frontiers in microbiology, 5, 52.
Chamberlain, E., & Adams, C. (2006). Oxidation of sulfonamides, macrolides, and carbadox with free chlorine and monochloramine. Water Research, 40(13), 2517-2526.
Chen, K. L., & Elimelech, M. (2008). Interaction of fullerene (C60) nanoparticles with humic acid and alginate coated silica surfaces: measurements, mechanisms, and environmental implications. Environmental science & technology, 42(20), 7607-7614.
Chen, Q., Chen, Y., Qi, Y., Hao, L., Tang, S., & Xiao, X. (2008). Characterization of carbadox-induced mutagenesis using a shuttle vector pSP189 in mammalian cells. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 638(1-2), 11-16.
Chen, Q., Tang, S., Jin, X., Zou, J., Chen, K., Zhang, T., & Xiao, X. (2009). Investigation of the genotoxicity of quinocetone, carbadox and olaquindox in vitro using Vero cells. Food and chemical toxicology, 47(2), 328-334.
Chen, W. R., Liu, C., Boyd, S. A., Teppen, B. J., & Li, H. (2013). Reduction of carbadox mediated by reaction of Mn (III) with oxalic acid. Environmental science & technology, 47(3), 1357-1364.
Davies, S. H., & Morgan, J. J. (1989). Manganese (II) oxidation kinetics on metal oxide surfaces. Journal of Colloid and Interface Science, 129(1), 63-77.
Davis, J. A. (1984). Complexation of trace metals by adsorbed natural organic matter. Geochimica et Cosmochimica Acta, 48(4), 679-691.
De Graaf, G., Jager, L., Baars, A., & Spierenburg, T. J. (1988). Some pharmacokinetic observations of carbadox medication in pigs. Veterinary Quarterly, 10(1), 34-41.
Dellwig, O., Schnetger, B., Brumsack, H.-J., Grossart, H.-P., & Umlauf, L. (2012). Dissolved reactive manganese at pelagic redoxclines (part II): Hydrodynamic conditions for accumulation. Journal of marine systems, 90(1), 31-41.
Ding, Y., Teppen, B. J., Boyd, S. A., & Li, H. (2013). Measurement of associations of pharmaceuticals with dissolved humic substances using solid phase extraction. Chemosphere, 91(3), 314-319.
Evanko, C. R., & Dzombak, D. A. (1998). Influence of structural features on sorption of NOM-analogue organic acids to goethite. Environmental science & technology, 32(19), 2846-2855.
Fourest, E., & Volesky, B. (1995). Contribution of sulfonate groups and alginate to heavy metal biosorption by the dry biomass of Sargassum fluitans. Environmental science & technology, 30(1), 277-282.
Giguère, S., Prescott, J. F., & Dowling, P. M. (2013). Antimicrobial therapy in veterinary medicine: John Wiley & Sons.
Gombotz, W. R., & Wee, S. (1998). Protein release from alginate matrices. Advanced drug delivery reviews, 31(3), 267-285.
Gu, B., Schmitt, J., Chen, Z., Liang, L., & McCarthy, J. F. (1994). Adsorption and desorption of natural organic matter on iron oxide: mechanisms and models. Environmental science & technology, 28(1), 38-46.
Harrington, J. M., Parker, D. L., Bargar, J. R., Jarzecki, A. A., Tebo, B. M., Sposito, G., & Duckworth, O. W. (2012). Structural dependence of Mn complexation by siderophores: donor group dependence on complex stability and reactivity. Geochimica et Cosmochimica Acta, 88, 106-119.
Hodgkinson, A. (1977). Oxalic acid in biology and medicine. London—New York.
Johnson, K. L., McCann, C. M., Wilkinson, J.-L., Jones, M., Tebo, B. M., West, M., Elgy, C., Clarke, C. E., Gowdy, C., & Hudson-Edwards, K. A. (2018). Dissolved Mn (III) in water treatment works: Prevalence and significance. Water Research, 140, 181-190.
Johnson, S. B., Yoon, T. H., & Brown, G. E. (2005). Adsorption of organic matter at mineral/water interfaces: 5. Effects of adsorbed natural organic matter analogues on mineral dissolution. Langmuir, 21(7), 2811-2821.
Johnston, A. (1992). Evaluation of certain veterinary drug residues in food: World Health Organization Technical Report Series No. 815, WHO, Geneva, 1992, SFr 9.00, ISBN 924-120-8155, 66 pp. In: Elsevier.
Kim, Y., Lee, K.-B., & Choi, K. (2016). Effect of runoff discharge on the environmental levels of 13 veterinary antibiotics: A case study of Han River and Kyungahn Stream, South Korea. Marine pollution bulletin, 107(1), 347-354.
Klausen, J., Haderlein, S. B., & Schwarzenbach, R. P. (1997). Oxidation of substituted anilines by aqueous MnO2: Effect of co-solutes on initial and quasi-steady-state kinetics. Environmental science & technology, 31(9), 2642-2649.
Laha, S., & Luthy, R. G. (1990). Oxidation of aniline and other primary aromatic amines by manganese dioxide. Environmental science & technology, 24(3), 363-373.
Lauridsen, M. G., Lund, C., & Jacobsen, M. (1988). Determination and Depletion of Residues in Carbadox, Tylosin, and Virginiamycin in Kidney, Liver, and Muscle of Pigs in Feeding Experiments. Journal of the Association of Official Analytical Chemists, 71(5), 921-925.
Le, T., Zhu, L., Shu, L., & Zhang, L. (2016a). Simultaneous determination of five quinoxaline-1, 4-dioxides in animal feeds using an immunochromatographic strip. Food Additives & Contaminants: Part A, 33(2), 244-251.
Le, T., Zhu, L., & Yu, H. (2016b). Dual-label quantum dot-based immunoassay for simultaneous determination of Carbadox and Olaquindox metabolites in animal tissues. Food chemistry, 199, 70-74.
Leenheer, J. A., & Croué, J.-P. (2003). Peer reviewed: characterizing aquatic dissolved organic matter. In: ACS Publications.
Lewis, B., & Landing, W. (1991). The biogeochemistry of manganese and iron in the Black Sea. Deep Sea Research Part A. Oceanographic Research Papers, 38, S773-S803.
Lin, K., Liu, W., & Gan, J. (2009). Oxidative Removal of Bisphenol A by Manganese Dioxide: Efficacy, Products, and Pathways. Environmental science & technology, 43(10), 3860-3864.
Liou, S. Y., & Chen, W. R. (2018). Oxidative transformation kinetics and pathways of albendazole from reactions with manganese dioxide. Journal of Hazardous Materials, 347, 299-306.
Macalady, D. L., & Walton-Day, K. (2011). Redox chemistry and natural organic matter (NOM): Geochemists’ dream, analytical chemists’ nightmare. In Aquatic Redox Chemistry (pp. 85-111): ACS Publications.
Macintosh, A. I., Lauriault, G., & Neville, G. A. (1985). Liquid chromatographic monitoring of the depletion of carbadox and its metabolite desoxycarbadox in swine tissues. Journal of the Association of Official Analytical Chemists, 68(4), 665-671.
Mandernack, K. W., Post, J., & Tebo, B. M. (1995). Manganese mineral formation by bacterial spores of the marine Bacillus, strain SG-1: evidence for the direct oxidation of Mn (II) to Mn (IV). Geochimica et Cosmochimica Acta, 59(21), 4393-4408.
McArdell, C. S., Stone, A. T., & Tian, J. (1998). Reaction of EDTA and related aminocarboxylate chelating agents with CoIIIOOH (heterogenite) and MnIIIOOH (manganite). Environmental science & technology, 32(19), 2923-2930.
Morgan, J. J. (2000). Manganese in natural waters and earth’s crust: Its availability to organisms. Metal ions in biological systems, 37, 1-34.
Murray, J. W., Dillard, J. G., Giovanoli, R., Moers, H., & Stumm, W. (1985). Oxidation of Mn (II): Initial mineralogy, oxidation state and ageing. Geochimica et Cosmochimica Acta, 49(2), 463-470.
Nabuurs, M., Van Der Molen, E., De Graaf, G., & Jager, L. (1990). Clinical signs and performance of pigs treated with different doses of carbadox, cyadox and olaquindox. Journal of Veterinary Medicine Series A, 37(1‐10), 68-76.
Oldham, V. E., Miller, M. T., Jensen, L. T., & Luther III, G. W. (2017a). Revisiting Mn and Fe removal in humic rich estuaries. Geochimica et Cosmochimica Acta, 209, 267-283.
Oldham, V. E., Mucci, A., Tebo, B. M., & Luther III, G. W. (2017b). Soluble Mn (III)–L complexes are abundant in oxygenated waters and stabilized by humic ligands. Geochimica et Cosmochimica Acta, 199, 238-246.
Perez, J., & Jeffries, T. W. (1992). Roles of manganese and organic acid chelators in regulating lignin degradation and biosynthesis of peroxidases by Phanerochaete chrysosporium. Applied and Environmental Microbiology, 58(8), 2402-2409.
Post, J. E. (1999). Manganese oxide minerals: Crystal structures and economic and environmental significance. Proceedings of the National Academy of Sciences, 96(7), 3447-3454.
Qin, W., Tan, P. Y., Song, Y., Wang, Z. H., Nie, J. X., & Ma, J. (2021). Enhanced transformation of phenolic compounds by manganese(IV) oxide, manganese(II) and permanganate in the presence of ligands: The determination and role of Mn(III). Separation and Purification Technology, 261.
Song, Y., Jiang, J., Ma, J., Zhou, Y., & von Gunten, U. (2019). Enhanced transformation of sulfonamide antibiotics by manganese(IV) oxide in the presence of model humic constituents. Water Research, 153, 200-207.
Stone, A. T. (1987a). Microbial metabolites and the reductive dissolution of manganese oxides: oxalate and pyruvate. Geochimica et Cosmochimica Acta, 51(4), 919-925.
Stone, A. T. (1987b). Reductive dissolution of manganese (III/IV) oxides by substituted phenols. Environmental science & technology, 21(10), 979-988.
Stone, A. T., & Morgan, J. J. (1984). Reduction and dissolution of manganese (III) and manganese (IV) oxides by organics: 2. Survey of the reactivity of organics. Environmental science & technology, 18(8), 617-624.
Strock, T. J., Sassman, S. A., & Lee, L. S. (2005). Sorption and related properties of the swine antibiotic carbadox and associated N-oxide reduced metabolites. Environmental science & technology, 39(9), 3134-3142.
Taube, H. (1947). Catalysis of the reaction of chlorine and oxalic acid. Complexes of trivalent manganese in solutions containing oxalic acid. Journal of the American Chemical Society, 69(6), 1418-1428.
Taube, H. (1948). Catalysis by manganic ion of the reaction of bromine and oxalic acid. Stability of manganic ion complexes. Journal of the American Chemical Society, 70(11), 3928-3935.
Tebo, B. M., Bargar, J. R., Clement, B. G., Dick, G. J., Murray, K. J., Parker, D., Verity, R., & Webb, S. M. (2004). Biogenic manganese oxides: properties and mechanisms of formation. Annu. Rev. Earth Planet. Sci., 32, 287-328.
Tebo, B. M., & Emerson, S. (1986). Microbial manganese (II) oxidation in the marine environment: a quantitative study. Biogeochemistry, 2(2), 149-161.
Ukrainczyk, L., & McBride, M. B. (1993). Oxidation and dechlorination of chlorophenols in dilute aqueous suspensions of manganese oxides: Reaction products. Environmental Toxicology and Chemistry: An International Journal, 12(11), 2015-2022.
Van Aken, B., & Agathos, S. (2002). Implication of manganese (III), oxalate, and oxygen in the degradation of nitroaromatic compounds by manganese peroxidase (MnP). Applied microbiology and biotechnology, 58(3), 345-351.
Van der Molen, E., Baars, A., De Graaf, G., & Jager, L. (1989a). Comparative study of the effect of carbadox, olaquindox and cyadox on aldosterone, sodium and potassium plasma levels in weaned pigs. Research in veterinary science, 47(1), 11-16.
Van der Molen, E., De Graaf, G., & Baars, A. (1989b). Persistence of carbadox-induced adrenal lesions in pigs following drug withdrawal and recovery of aldosterone plasma concentrations. Journal of Comparative Pathology, 100(3), 295-304.
Wang, D., Shin, J. Y., Cheney, M. A., Sposito, G., & Spiro, T. G. (1999). Manganese dioxide as a catalyst for oxygen-independent atrazine dealkylation. Environmental science & technology, 33(18), 3160-3165.
Wang, H., Liu, Y., Hu, G., Ye, Y., Pan, L., Zhu, P., & Yao, S. (2020). Ultrasensitive electrochemical sensor for determination of trace carbadox with ordered mesoporous carbon/GCE. Journal of Electroanalytical Chemistry, 857, 113736.
Wang, H., Yao, H., Sun, P., Li, D., & Huang, C.-H. (2016). Transformation of tetracycline antibiotics and Fe (II) and Fe (III) species induced by their complexation. Environmental science & technology, 50(1), 145-153.
Wang, Y., & Stone, A. T. (2008). Phosphonate-and carboxylate-based chelating agents that solubilize (hydr) oxide-bound MnIII. Environmental science & technology, 42(12), 4397-4403.
Wu, Y., Wang, Y., Huang, L., Tao, Y., Yuan, Z., & Chen, D. (2006). Simultaneous determination of five quinoxaline-1, 4-dioxides in animal feeds using ultrasonic solvent extraction and high-performance liquid chromatography. Analytica chimica acta, 569(1-2), 97-102.
Xu, L., Xu, C., Zhao, M. R., Qiu, Y. P., & Sheng, G. D. (2008). Oxidative removal of aqueous steroid estrogens by manganese oxides. Water Research, 42(20), 5038-5044.
Yakushev, E., Pollehne, F., Jost, G., Kuznetsov, I., Schneider, B., & Umlauf, L. (2007). Analysis of the water column oxic/anoxic interface in the Black and Baltic seas with a numerical model. Marine Chemistry, 107(3), 388-410.
Yao, W. S., & Millero, F. J. (1996). Adsorption of phosphate on manganese dioxide in seawater. Environmental science & technology, 30(2), 536-541.
Zhang, H., & Huang, C.-H. (2005). Reactivity and transformation of antibacterial N-oxides in the presence of manganese oxide. Environmental science & technology, 39(2), 593-601.
周庭宇. (2018). 溶解性有機質對Mn(II)與Cu(II)降解四環素之影響. (碩士), 國立成功大學, 台南市.