|
Chapter 1 [1]H. Raether, “Surface Plasmons,” Springer Tracts in Modern Physics, Springer-Verlag: Berlin, Vol. 111 (1988). [2]H. Padé, “Sur la représentation approchée d'une fonction par des fractions rationnelles,” Annales scientifiques de l'École Normale Supérieure, Vol. 9 (1892). [3]S. Dey, and R. Mittra, "Efficient computation of resonant frequencies and quality factors of cavities via a combination of the finite-difference time-domain technique and the Padé approximation," IEEE Microwave and Guided Wave Letters 8(12), 415-417 (1998).
Chapter 2 [1]K. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Transactions on Antennas and Propagation, 14(3), 302–307 (1966). [2]A. Taflove, “Application of the finite-difference time-domain method to sinusoidal steady state electromagnetic penetration problems,” IEEE Trans. on EMC. EMC-22(3), 191–202 (1980). [3]A. Taflove, and S. C. Hagness, “Computational electromagnetics: the finite-difference time-domain method,” Artech House, 629-670 (2005). [4]R. Holland, “THREDE: A Free-Field EMP Coupling and Scattering Code,” IEEE Transactions on Nuclear Science, NS-24(6), 2416-2421 (1977). [5]K. S. Kunz, and K. M. Lee, “A Three-Dimensional Finite-Difference Solution of the External Response of an Aircraft to a Complex Transient EM Environment: Part II-Comparison of Predictions and Measurements,” IEEE Trans. on EMC, EMC-20(2), 333-341 (1978). [6]G. Mur, “Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations,” IEEE Trans. On EMC, EMC-23(4), 377-382 (1981). [7]J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” Journal of Computational Physics 114, 185-200 (1994). [8]J. A. Roden, and S. D. Gedney, “Convolution PML (CPML): an efficient FDTD implementation of the CFD-PML for arbitrary media,” Microw. Opt. Technol. Lett. 27, 334-9 (2000).
Chapter 3 [1]Y. Tang, and A. E. Cohen, “Optical Chirality and Its Interaction with Matter,” Phys. Rev. Lett. 104, 163901 (2010). [2]L. D. Barron, “Molecular light scattering and optical activity,” Cambridge, England, Cambridge University Press (2004). [3]S. Yoo and Q. H. Park, “Metamaterials and chiral sensing: A review of fundamentals and applications,” Nanophotonics, 8, 249 (2019). [4]D. M. Lipkin, “Existence of a New Conservation Law in Electromagnetic Theory,” J. Math. Phys. 5, 696 (1964). [5]M. Schäferling, X. Yin, and H. Giessen, “Formation of chiral felds in a symmetric environment,” Opt. Express 20(24), 26326-26336 (2012). [6]D. Lin, and J. S. Huang, “Slant-gap plasmonic nanoantennas for optical chirality engineering and circular dichroism enhancement,” Opt. Express 22(7), 7434-7445 (2014). [7] E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5, 783-787 (2010). [8] M. Scha¨ferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring Enhanced Optical Chirality: Design Principles for Chiral Plasmonic Nanostructures,” Phys. Rev. X 2, 031010 (2012). [9] J. T. Collins, C. Kuppe, D. C. Hooper, C. Sibilia, M. Centini, and V. K. Valev, “Chirality and Chiroptical Effects in Metal Nanostructures: Fundamentals and Current Trends,” Adv. Optical Mater. 5, 1700182 (2017). [10] L, Hu, F. Xi, L. Qv, and Y. Fang, “Searching the Theoretical Ultimate Limits of Probing Surface- Enhanced Raman Optical Activity,” ACS Omega 3, 1170-1177 (2018). [11] S. X. Zhao, and W. Zhang, “Plasmonic chirality of one-dimensional arrays of twisted nanorod dimers: the cooperation of local structure and collective effect,” Opt. Express 27(26), 38614-38623 (2019). [12] A. Horrer, Y. Zhang, D. Gérard, J. Béal, M. Kociak, J. Plain, and R. Bachelot, “Local Optical Chirality Induced by Near-Field Mode Interference in Achiral Plasmonic Metamolecules,” Nano Lett. 20, 509-519 (2020). [13] A. Vázquez-Guardado, and D. Chanda, “Superchiral Light Generation on Degenerate Achiral Surfaces,” Phys. Rev. Lett. 120, 137601 (2018). [14] Z. L. Cao, L. Y. Yiu,1 Z. Q. Zhang, C. T. Chan, and H. C. Ong, “Understanding the role of surface plasmon polaritons in two-dimensional achiral nanohole arrays for polarization conversion,” Phys. Rev. B 95, 155415 (2017). [15] P. Emilija, M. S. Elizabeth, R. Mohammad, L. O. R. César, N. Cecilia, A. B. Fabio, S. Concita, and P. Giuseppe, “Extended Chiro-optical Near-Field Response of Achiral Plasmonic Lattices,” J. Phys. Chem. C 123, 23620-23627 (2019). [16] S. Hshiyada, T. Narushima, and H. Okamoto, “Local Optical Activity in Achiral Two-Dimensional Gold Nanostructures,” J. Phys. Chem. C 118, 22229-22233 (2014). [17] M. L. Nesterov, X. Yin, M. Schäferling, H. Giessen, and T. Weiss, “The Role of Plasmon-Generated Near Fields for Enhanced Circular Dichroism Spectroscopy,” ACS Photonics 3, 578-583 (2016). [18] S. Hshiyada, T. Narushima, and H. Okamoto, “Active Control of Chiral Optical near Fields on a Single Metal Nanorod,” ACS Photonics 6, 677-683 (2019). [19] M. Schäferling, N. Engheta, H. Geissen, and T. Weiss, “Reducing the Complexity: Enantioselective Chiral Near-Fields by Diagonal Slit and Mirror Configuration,” ACS photonics 3, 1076-1084 (2016). [20] H. Zhang, Y. Wang, L. Luo, H. Wang, and Z. Zhang, “Enhanced Circular Dichroism of Gold Bilayered Slit Arrays Embedded with Rectangular Holes,” J. Nanosci. Nanotechnol. 17(1) 377-381 (2017). [21] X. Zhao, and B. M. Reinhard, “Switchable Chiroptical Hot-Spots in Silicon Nanodisk Dimers,” ACS Photonics 6, 1981-1989 (2019). [22] F. Reyes Gómez, O. N. Oliveira Jr, P. Albella, and J. R. Mejía-Salazar, “Enhanced chiroptical activity with slotted high refractive index dielectric nanodisks,” Phys. Rev. B 101, 155403 (2020). [23] P. Emilija, and S. Concita, “Enhanced Near-Field Chirality in Periodic Arrays of Si Nanowires for Chiral Sensing,” Molecules 24, 853 (2019). [24] X. Yin, M. Schäferling, B. Metzger, and H. Giessen, “Interpreting Chiral Nanophotonic Spectra: The Plasmonic Born−Kuhn Model,” Nano Lett. 13, 6238-6243 (2013). [25] B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-Area 3D Chiral Plasmonic Structures,” ACS Nano 7(7), 6321-6329 (2013). [26] M. Schäferling, X. Yin, N. Engheta, and H Geissen, “Helical Plasmonic Nanostructures as Prototypical Chiral Near-Field Sources,” ACS Photonics 1, 530-537 (2014). [27] T. Narushima, S. Hashiyada, and H. Okamoto, “Nanoscopic Study on Developing Optical Activity with Increasing Chirality for Two-Dimensional Metal Nanostructures,” ACS Photonics 1, 732-738 (2014). [28] S. P. Rodrigues, Y. Cui, S. Lan, L. Kang, and W. Cai, “Metamaterials Enable Chiral-Selective Enhancement of Two-Photon Luminescence from Quantum Emitters,” Adv. Mater. 27, 1124-1130 (2015). [29] T. Fu, T. Wang, Y. Chen, Y. Wang, Y. Qu, and Z. Zhang, “Chiral near-fields around chiral dolmen nanostructure,” J. Phys. D: Appl. Phys. 50, 474004 (2017). [30] M. L. Tseng, Z. H. Lin, H. Y. Kao, T. T. Huang, Y. T. Huang, T. L. Chung, C. H. Chu, J. S. Huang, and D. P. Tsai, “Stress-Induced 3D Chiral Fractal Metasurface for Enhanced and Stabilized Broadband Near-Field Optical Chirality,” Adv. Optical. Mater. 7, 1900617 (2019). [31] C. Y. Lin, Y. Y. Chen, P. T. Lin, and S. H. G. Chang, “Circular dichroism property of conjugated gammadion meta-atom integrated on silicon waveguide,” Appl. Phys. Express 14, 032006 (2021). [32] T. Iida, A. Ishikawa, T. Tanaka, A. Muranaka, M. Uchiyama, Y. Hayashi, and K. Tsuruta, “Super-chiral vibrational spectroscopy with metasurfaces for high-sensitive identification of alanine enantiomers,” Appl. Phys. Lett. 117, 101103 (2020). [33] L. V. Poulikakos, P. Thureja, A. Stollmann, E. D. Leo, and D. J. Norris, “Chiral Light Design and Detection Inspired by Optical Antenna Theory,” Nano Lett. 18, 4633-4640 (2018)
Chapter 4 [1]J. von Neumann, and E. Wigner, “Über merkwürdige diskrete Eigenwerte,” Phys. Z. 30, 465-467 (in German) (1929). [2]L. Fonda, “Bound states embedded in the continuum and the formal theory of scattering,” Ann. Phys. 22, 123-132 (1963). [3]F. Ursell, “Trapping modes in the theory of surface waves,” Cambridge University Press, 47, 347-358 (1951). [4]N. A. Cumpsty, D. Whitehead, “The excitation of acoustic resonances by vortex shedding,” J. Sound Vib. 18, 353-369 (1971). [5]M. McIver, “An example of non-uniqueness in the two-dimensional linear water wave problem,” J. Fluid Mech 315, 257-266 (1996). [6]D. C. Marinica, and A. G. Borisov, “Bound States in the Continuum in Photonics,” Phys. Rev. Lett. 100, 183902 (2008). [7]C. W. Hsu, B. Zhen, , J. Lee, S. L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499, 188-191 (2013) [8]C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1, 16048 (2016). [9]K. Koshelev, G. Favraud, A. Bogdanov, Y. Kivshar, and A. Fratalocchi, “Nonradiating photonics with resonant dielectric nanostructures,” Nanophotonics, https://doi.org/10.1515/nanoph-2019-0024 (2019). [10]S. Weimann et al. “Compact Surface Fano States Embedded in the Continuum ofWaveguide Arrays,” Phys. Rev. Lett. 111, 240403 (2013). [11]H. Friedrich, and D. Wintgen, “Interfering resonances and bound states in the continuum,” Phys. Rev. A 32(6), 3231-3242 (1985). [12]S. H. Gilbert Chang and C. Y. Sun, “Avoided resonance crossing and nonreciprocal nearly perfect absorption in plasmonic nanodisks with near-field and farfield couplings,” Opt. Express 24(15), 16822-16834 (2016).
Chapter 5 [1]T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, "Nanosphere Lithography: Tunable Localized Surface Plasmon Resonance Spectra of Silver Nanoparticles", J. Phys. Chem. B, 104, 10549 (2000). [2]R. Jin., Y. C. Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation.”, Nature., 425, 487–490 (2003). [3]W. Y. Ma, H. Yang, J. P. Hilton, Q. Lin, J. Y. Liu, L. X. Huang, and J. Yao, "A numerical investigation of the effect of vertex geometry on localized surface plasmon resonance of nanostructures," Opt. Express, 18, 843-853 (2010). [4]E. Hao, R. C. Bailey, G. C. Schatz, J. T. Hupp, and S. Li, "Synthesis and Optical Properties of "Branched" Gold Nanocrystals," Nano Letters, 4, (12), 2397-2401 (2004). [5]Y. Zhou, C. Y. Wang, Y. R. Zhu, and Z. Y. Chen, “A Novel Ultraviolet Irradiation Technique for Shape-Controlled Synthesis of Gold Nanoparticles at Room Temperature”, Chem. Mater., 11, 2310 (1999). [6]C. H. Kuo, T. F. Chiang, L. J. Chen, and Michael H. Huang, “Synthesis of Highly Faceted Pentagonal- and Hexagonal-Shaped Gold Nanoparticles with Controlled Sizes by Sodium Dodecyl Sulfate”, Langmuir, 20, 7820-7824 (2004). [7]Y. Sun, and Y. Xia, “Shape-controlled Synthesis of Gold and Silver Nanoparticles”, Science, 298, 2176 (2002). [8]L. J. Sherry, S. Chang, B.J. Wiley, Y. Xia, G. C. Schatz, and R. P. Van Duyne. "Localized Surface Plasmon Resonance Spectroscopy of Single Silver Nanocubes", Nano. Lett., 5, 2034-2038 (2005). [9]Y. H. Su, W. H. Lai, W. Y. Chen, M. H. Hon, and S. H. Chang, “Surface plasmon resonance of gold nano-sea-urchin”, Appl. Phys. Lett., 90, 181905 (2007). [10]I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles”, Phys. Rev. B, 72, 155412 (2005). [11]N. Berkovitch, P. Ginzburg, and M. Orenstein, “Concave plasmonic particles: broad-band geometrical tunability in the near-infrared”, Nano Letters, 10, 1405-1408 (2010). [12]Y. H. Su, S. L Tu, S. W. Tseng, Y. C. Chang, S. H. Change and W. M. Zhang, “Influence of surface plasmon resonance on the emission intermittency of photoluminescence from gold nano-sea-urchins”, Nanoscale, 2, 2639-2646 (2010). [13]F. W. King, R.P. Van Duyne, G.C. Schatz, "Theory of Raman Scattering by Molecules Adsorbed on Electrode Surfaces", J. Chem. Phys., 69, 4472-4481, 1978. [14]A. Taflove, S. C. Hagness, Computational Electrodynamics, 3rd ed., Artech House (2005). [15]蘇于倫, “Transformation of Optical Properties between Plasmonic and Non-plasmonic Nano-structures” (National Chen Kung University, Ph,D Thesis, pp.67-87, 2015) [16]Isaak D. Mayergoyz, Donald R. Fredkin, and Zhenyu Zhang, “Electrostatic (plasmon) resonances in nanoparticles”, Phys. Rev. B, 72, 155412 (2005). [17]Abdul-Majid Wazwaz, Fresfolm Integral Equations. In: Linear and Nonnlinear Integral Equations, pp. 119-173, Springer (2011).
|