跳到主要內容

臺灣博碩士論文加值系統

(44.220.184.63) 您好!臺灣時間:2024/10/04 07:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳昱佑
研究生(外文):Chen, Yu-Yu
論文名稱:以有限差分時域法模擬斜縫天線之光學親手性增益研究
論文名稱(外文):The Mechanism of Optical Chirality Enhancement in Slant-gap Antenna with FDTD Simulations
指導教授:張世慧張世慧引用關係
指導教授(外文):Chang, Shih-Hui
口試委員:曾雪峰陳國平陳宣燁藍永強
口試委員(外文):Tseng, Snow H.Chen, Kuo-PingChen, Shiuan-YehLan, Yung-Chiang
口試日期:2021-07-26
學位類別:博士
校院名稱:國立成功大學
系所名稱:光電科學與工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:英文
論文頁數:146
中文關鍵詞:有限差分時域法表面電漿共振親手性斜縫金屬天線
外文關鍵詞:FDTDsurface plasmon resonancechiralityslant-gap metal antenna
相關次數:
  • 被引用被引用:0
  • 點閱點閱:109
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
親手性(chirality)是一種自身結構與鏡像結構不對稱的特性,此特性在自然界中十分常見。親手性分子的鏡像結構無法與自身完全重合,並存在對左手圓偏振(LCP)光與右手圓偏振(RCP)光的不同吸收率。這種對左右手圓偏振光吸收率的不同又稱作吸收圓二色性(circular dichroism, CD),親手性分子的圓二色性可被用來鑑別或偵測該親手性分子。在自然界中常見的親手性分子如:DNA與葡萄糖中的胺基酸。
光學親手性增益(optical chirality enhancement, OCE)是針對親手性分子的光學親手性增益係數。本篇論文中,我們利用有限差分時域法(finite-different time-domain, FDTD)模擬線偏振光正向與斜向入射斜縫金屬天線,又分為vertical-cut與slant-cut兩種,並計算其OCE。我們驗證了OCE的主要貢獻來自於入射光磁場H_inc以及局域性表面電漿共振(localized surface plasmon resonant, LSPR)衰逝電場E_LSPR,而且純LSPR近場項的空間總和為0。基於以上研究,我們進一步能準確地計算受基板效應影響的不對稱OCE。
在現實實驗中,親手性分子一般存在於空氣側並且無法被基板側的OCE激發,因此我們利用矩形區塊對空氣側OCE進行積分,積分範圍則為距離金屬表面d。上方入射情況下,相比於slant-cut天線,由於vertical-cut天線具有垂直奇對稱的OCE分布,有較好的積分值。下方入射情況下,在d較小時vertical-cut天線的積分值呈現略負,並且當空氣側積分範圍越大(d越大)時轉為正值。slant-cut天線則因為具有水平奇對稱的OCE分布,隨著積分範圍d增加積分值並沒有太大的變化。
Chirality, a performance of broken mirror symmetry, common in nature. Chiral molecules whose mirror images do not overlap with the original, exhibit different absorption properties with left and right hand circular polarized incident light (LCP/RCP). The difference in absorption rate is called the absorption circular dichroism (CD) and can be used to distinguish and detect the chiral molecules. These chiral molecules are commonly present in nature such as amino acids in DNA and glucose.
Optical chirality enhancement (OCE) is a factor that enhance optical chirality of chiral molecules. In this thesis, we use finite-different time-domain (FDTD) to calculate the OCE in slant-gap metal antenna with vertical-cut/slant-cut configuration by normal and oblique incident light with linear polarization. We prove that the main contribution of OCE is originated from the inner product of the incident H field H_inc and the localized surface plasmon resonant (LSPR) evanescent E field E_LSPR. And the pure LSPR near-field term give net zero contribution. Based on these research, we can accurately count for the asymmetric OCE distribution due to the substrate effect.
In the experiments, chiral molecules typically stay on the air side and cannot experience OCE from the substrate side. Thus, we integrate OCE value by using rectangular box on the air side with distance d from metal surface. For top illumination, the vertical-cut case shows better OCE value than the slant-cut case because of the vertically odd OCE distribution. For bottom illumination, the vertical-cut case shows less net negative value for smaller d, and becomes positive when including more space (larger d) on the air side. In slant-cut case, there is not much change in the OCE value if d increases because of the horizontally odd OCE distribution.
中文摘要 I
Abstract II
致謝 III
Contents IV
List of Tables VII
List of Figures IX
List of Symbols XVI

Chapter 1 Introduction
1-1 Surface Plasmons 1
1-1-1 Dispersion of surface plasmons at interface 2
1-2 Metal Gap (MIM) and Metal Film (IMI) 6
1-2-1 Metal gap (MIM) 10
1-2-2 Metal film (IMI) 12
1-3 Pad´e Approximation 14
1-4 Reference 15

Chapter 2 Numerical Method
2-1 Finite-Difference Time-Domain (FDTD) Method 16
2-1-1 The Yee’s algorithm 16
2-1-2 Stability condition 20
2-1-3 Convolutional PML (CPML) 21
2-1-4 Total-field scatter-field (TF/SF) 30
2-1-5 Example for Ag sphere 31
2-2 Order-N Method 33
2-3 Constant-K Method 36
2-3-1 Homogeneous 38
2-3-2 Inhomogeneous with interface 40
2-3-3 Application in 2D & 3D 42
2-3-3-1 2D Periodic structure 43
2-3-3-2 2D Non-periodic structure 44
2-3-3-3 3D Periodic structure 45
2-3-3-4 3D Non-periodic structure 47
2-3-4 Example for n_1=2 to n_2=1 49
2-3-5 Example for n_1=1 to n_2=2 50
2-4 Reference 51

Chapter 3 The Mechanism of Optical Chirality Enhancement in Slant-gap Antenna
3-1 Optical Chirality Enhancement (OCE) 52
3-2 OCE Contribution 55
3-3 Antenna in Free Space 57
3-3-1 Normal incident with top and bottom illumination 59
3-3-1-1 Box integration of OCE 61
3-3-1-2 Threshold integration of OCE 63
3-3-1-3 OCE x, y and z contributions and retardation effect 68
3-3-2 Oblique incident with top and bottom illumination 70
3-4 Antenna on Substrate 72
3-4-1 Substrate effect 72
3-4-2 Oblique incident with top and bottom illumination 77
3-5 Conclusions 80
3-6 Reference 80

Chapter 4 Bound States in the Continuum in 2D Plasmonic Crystals
4-1 Bound states in Continuum (BICs) 84
4-2 Single Layer Ag Disk Arrays 86
4-2-1 Grating effect 86
4-2-2 LSPR mode 89
4-2-3 High Q mode with P-polar plane wave 93
4-2-4 IMI dispersion with periodic band folding 97
4-2-5 High Q mode with point source Hx 98
4-2-6 Radius and thickness effect 101
4-3 Double Layer Ag Disk Arrays 105
4-3-1 Hamiltonian 105
4-3-2 Symmetric geometry (r1=r2=80nm) 108
4-3-3 Asymmetric geometry (r1=70nm, r2=80nm) 117
4-4 Conclusions 121
4-5 Reference 121

Chapter 5 Plasmonic Resonant Modes in Highly Symmetric Multi-Branches Nanostructures
5-1 Introduction 123
5-2 Materials and Computational Method 125
5-2-1 Materials 125
5-2-2 Computational method 127
5-3 Results and Discussion 128
5-3-1 Three different cross-section of rod structure: cylindrical, hexagonal, and triangular nanorod 128
5-3-2 Spike-like, concave, and convex structure 132
5-3-3 Sea star structure 133
5-3-4 Tetrapod structure 1: cylindrical, hexagonal, and triangular tetrapod 137
5-3-5 Tetrapod structure 2: concave and convex tetrapod 139
5-3-6 Multi-branch sea urchin structure 140
5-4 Conclusions 143
5-5 Reference 145
Chapter 1
[1]H. Raether, “Surface Plasmons,” Springer Tracts in Modern Physics, Springer-Verlag: Berlin, Vol. 111 (1988).
[2]H. Padé, “Sur la représentation approchée d'une fonction par des fractions rationnelles,” Annales scientifiques de l'École Normale Supérieure, Vol. 9 (1892).
[3]S. Dey, and R. Mittra, "Efficient computation of resonant frequencies and quality factors of cavities via a combination of the finite-difference time-domain technique and the Padé approximation," IEEE Microwave and Guided Wave Letters 8(12), 415-417 (1998).

Chapter 2
[1]K. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Transactions on Antennas and Propagation, 14(3), 302–307 (1966).
[2]A. Taflove, “Application of the finite-difference time-domain method to sinusoidal steady state electromagnetic penetration problems,” IEEE Trans. on EMC. EMC-22(3), 191–202 (1980).
[3]A. Taflove, and S. C. Hagness, “Computational electromagnetics: the finite-difference time-domain method,” Artech House, 629-670 (2005).
[4]R. Holland, “THREDE: A Free-Field EMP Coupling and Scattering Code,” IEEE Transactions on Nuclear Science, NS-24(6), 2416-2421 (1977).
[5]K. S. Kunz, and K. M. Lee, “A Three-Dimensional Finite-Difference Solution of the External Response of an Aircraft to a Complex Transient EM Environment: Part II-Comparison of Predictions and Measurements,” IEEE Trans. on EMC, EMC-20(2), 333-341 (1978).
[6]G. Mur, “Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations,” IEEE Trans. On EMC, EMC-23(4), 377-382 (1981).
[7]J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” Journal of Computational Physics 114, 185-200 (1994).
[8]J. A. Roden, and S. D. Gedney, “Convolution PML (CPML): an efficient FDTD implementation of the CFD-PML for arbitrary media,” Microw. Opt. Technol. Lett. 27, 334-9 (2000).

Chapter 3
[1]Y. Tang, and A. E. Cohen, “Optical Chirality and Its Interaction with Matter,” Phys. Rev. Lett. 104, 163901 (2010).
[2]L. D. Barron, “Molecular light scattering and optical activity,” Cambridge, England, Cambridge University Press (2004).
[3]S. Yoo and Q. H. Park, “Metamaterials and chiral sensing: A review of fundamentals and applications,” Nanophotonics, 8, 249 (2019).
[4]D. M. Lipkin, “Existence of a New Conservation Law in Electromagnetic Theory,” J. Math. Phys. 5, 696 (1964).
[5]M. Schäferling, X. Yin, and H. Giessen, “Formation of chiral felds in a symmetric environment,” Opt. Express 20(24), 26326-26336 (2012).
[6]D. Lin, and J. S. Huang, “Slant-gap plasmonic nanoantennas for optical chirality engineering and circular dichroism enhancement,” Opt. Express 22(7), 7434-7445 (2014).
[7] E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5, 783-787 (2010).
[8] M. Scha¨ferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring Enhanced Optical Chirality: Design Principles for Chiral Plasmonic Nanostructures,” Phys. Rev. X 2, 031010 (2012).
[9] J. T. Collins, C. Kuppe, D. C. Hooper, C. Sibilia, M. Centini, and V. K. Valev, “Chirality and Chiroptical Effects in Metal Nanostructures: Fundamentals and Current Trends,” Adv. Optical Mater. 5, 1700182 (2017).
[10] L, Hu, F. Xi, L. Qv, and Y. Fang, “Searching the Theoretical Ultimate Limits of Probing Surface- Enhanced Raman Optical Activity,” ACS Omega 3, 1170-1177 (2018).
[11] S. X. Zhao, and W. Zhang, “Plasmonic chirality of one-dimensional arrays of twisted nanorod dimers: the cooperation of local structure and collective effect,” Opt. Express 27(26), 38614-38623 (2019).
[12] A. Horrer, Y. Zhang, D. Gérard, J. Béal, M. Kociak, J. Plain, and R. Bachelot, “Local Optical Chirality Induced by Near-Field Mode Interference in Achiral Plasmonic Metamolecules,” Nano Lett. 20, 509-519 (2020).
[13] A. Vázquez-Guardado, and D. Chanda, “Superchiral Light Generation on Degenerate Achiral Surfaces,” Phys. Rev. Lett. 120, 137601 (2018).
[14] Z. L. Cao, L. Y. Yiu,1 Z. Q. Zhang, C. T. Chan, and H. C. Ong, “Understanding the role of surface plasmon polaritons in two-dimensional achiral nanohole arrays for polarization conversion,” Phys. Rev. B 95, 155415 (2017).
[15] P. Emilija, M. S. Elizabeth, R. Mohammad, L. O. R. César, N. Cecilia, A. B. Fabio, S. Concita, and P. Giuseppe, “Extended Chiro-optical Near-Field Response of Achiral Plasmonic Lattices,” J. Phys. Chem. C 123, 23620-23627 (2019).
[16] S. Hshiyada, T. Narushima, and H. Okamoto, “Local Optical Activity in Achiral Two-Dimensional Gold Nanostructures,” J. Phys. Chem. C 118, 22229-22233 (2014).
[17] M. L. Nesterov, X. Yin, M. Schäferling, H. Giessen, and T. Weiss, “The Role of Plasmon-Generated Near Fields for Enhanced Circular Dichroism Spectroscopy,” ACS Photonics 3, 578-583 (2016).
[18] S. Hshiyada, T. Narushima, and H. Okamoto, “Active Control of Chiral Optical near Fields on a Single Metal Nanorod,” ACS Photonics 6, 677-683 (2019).
[19] M. Schäferling, N. Engheta, H. Geissen, and T. Weiss, “Reducing the Complexity: Enantioselective Chiral Near-Fields by Diagonal Slit and Mirror Configuration,” ACS photonics 3, 1076-1084 (2016).
[20] H. Zhang, Y. Wang, L. Luo, H. Wang, and Z. Zhang, “Enhanced Circular Dichroism of Gold Bilayered Slit Arrays Embedded with Rectangular Holes,” J. Nanosci. Nanotechnol. 17(1) 377-381 (2017).
[21] X. Zhao, and B. M. Reinhard, “Switchable Chiroptical Hot-Spots in Silicon Nanodisk Dimers,” ACS Photonics 6, 1981-1989 (2019).
[22] F. Reyes Gómez, O. N. Oliveira Jr, P. Albella, and J. R. Mejía-Salazar, “Enhanced chiroptical activity with slotted high refractive index dielectric nanodisks,” Phys. Rev. B 101, 155403 (2020).
[23] P. Emilija, and S. Concita, “Enhanced Near-Field Chirality in Periodic Arrays of Si Nanowires for Chiral Sensing,” Molecules 24, 853 (2019).
[24] X. Yin, M. Schäferling, B. Metzger, and H. Giessen, “Interpreting Chiral Nanophotonic Spectra: The Plasmonic Born−Kuhn Model,” Nano Lett. 13, 6238-6243 (2013).
[25] B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-Area 3D Chiral Plasmonic Structures,” ACS Nano 7(7), 6321-6329 (2013).
[26] M. Schäferling, X. Yin, N. Engheta, and H Geissen, “Helical Plasmonic Nanostructures as Prototypical Chiral Near-Field Sources,” ACS Photonics 1, 530-537 (2014).
[27] T. Narushima, S. Hashiyada, and H. Okamoto, “Nanoscopic Study on Developing Optical Activity with Increasing Chirality for Two-Dimensional Metal Nanostructures,” ACS Photonics 1, 732-738 (2014).
[28] S. P. Rodrigues, Y. Cui, S. Lan, L. Kang, and W. Cai, “Metamaterials Enable Chiral-Selective Enhancement of Two-Photon Luminescence from Quantum Emitters,” Adv. Mater. 27, 1124-1130 (2015).
[29] T. Fu, T. Wang, Y. Chen, Y. Wang, Y. Qu, and Z. Zhang, “Chiral near-fields around chiral dolmen nanostructure,” J. Phys. D: Appl. Phys. 50, 474004 (2017).
[30] M. L. Tseng, Z. H. Lin, H. Y. Kao, T. T. Huang, Y. T. Huang, T. L. Chung, C. H. Chu, J. S. Huang, and D. P. Tsai, “Stress-Induced 3D Chiral Fractal Metasurface for Enhanced and Stabilized Broadband Near-Field Optical Chirality,” Adv. Optical. Mater. 7, 1900617 (2019).
[31] C. Y. Lin, Y. Y. Chen, P. T. Lin, and S. H. G. Chang, “Circular dichroism property of conjugated gammadion meta-atom integrated on silicon waveguide,” Appl. Phys. Express 14, 032006 (2021).
[32] T. Iida, A. Ishikawa, T. Tanaka, A. Muranaka, M. Uchiyama, Y. Hayashi, and K. Tsuruta, “Super-chiral vibrational spectroscopy with metasurfaces for high-sensitive identification of alanine enantiomers,” Appl. Phys. Lett. 117, 101103 (2020).
[33] L. V. Poulikakos, P. Thureja, A. Stollmann, E. D. Leo, and D. J. Norris, “Chiral Light Design and Detection Inspired by Optical Antenna Theory,” Nano Lett. 18, 4633-4640 (2018)

Chapter 4
[1]J. von Neumann, and E. Wigner, “Über merkwürdige diskrete Eigenwerte,” Phys. Z. 30, 465-467 (in German) (1929).
[2]L. Fonda, “Bound states embedded in the continuum and the formal theory of scattering,” Ann. Phys. 22, 123-132 (1963).
[3]F. Ursell, “Trapping modes in the theory of surface waves,” Cambridge University Press, 47, 347-358 (1951).
[4]N. A. Cumpsty, D. Whitehead, “The excitation of acoustic resonances by vortex shedding,” J. Sound Vib. 18, 353-369 (1971).
[5]M. McIver, “An example of non-uniqueness in the two-dimensional linear water wave problem,” J. Fluid Mech 315, 257-266 (1996).
[6]D. C. Marinica, and A. G. Borisov, “Bound States in the Continuum in Photonics,” Phys. Rev. Lett. 100, 183902 (2008).
[7]C. W. Hsu, B. Zhen, , J. Lee, S. L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499, 188-191 (2013)
[8]C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1, 16048 (2016).
[9]K. Koshelev, G. Favraud, A. Bogdanov, Y. Kivshar, and A. Fratalocchi, “Nonradiating photonics with resonant dielectric nanostructures,” Nanophotonics, https://doi.org/10.1515/nanoph-2019-0024 (2019).
[10]S. Weimann et al. “Compact Surface Fano States Embedded in the Continuum ofWaveguide Arrays,” Phys. Rev. Lett. 111, 240403 (2013).
[11]H. Friedrich, and D. Wintgen, “Interfering resonances and bound states in the continuum,” Phys. Rev. A 32(6), 3231-3242 (1985).
[12]S. H. Gilbert Chang and C. Y. Sun, “Avoided resonance crossing and nonreciprocal nearly perfect absorption in plasmonic nanodisks with near-field and farfield couplings,” Opt. Express 24(15), 16822-16834 (2016).

Chapter 5
[1]T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, "Nanosphere Lithography:  Tunable Localized Surface Plasmon Resonance Spectra of Silver Nanoparticles", J. Phys. Chem. B, 104, 10549 (2000).
[2]R. Jin., Y. C. Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation.”, Nature., 425, 487–490 (2003).
[3]W. Y. Ma, H. Yang, J. P. Hilton, Q. Lin, J. Y. Liu, L. X. Huang, and J. Yao, "A numerical investigation of the effect of vertex geometry on localized surface plasmon resonance of nanostructures," Opt. Express, 18, 843-853 (2010).
[4]E. Hao, R. C. Bailey, G. C. Schatz, J. T. Hupp, and S. Li, "Synthesis and Optical Properties of "Branched" Gold Nanocrystals," Nano Letters, 4, (12), 2397-2401 (2004).
[5]Y. Zhou, C. Y. Wang, Y. R. Zhu, and Z. Y. Chen, “A Novel Ultraviolet Irradiation Technique for Shape-Controlled Synthesis of Gold Nanoparticles at Room Temperature”, Chem. Mater., 11, 2310 (1999).
[6]C. H. Kuo, T. F. Chiang, L. J. Chen, and Michael H. Huang, “Synthesis of Highly Faceted Pentagonal- and Hexagonal-Shaped Gold Nanoparticles with Controlled Sizes by Sodium Dodecyl Sulfate”, Langmuir, 20, 7820-7824 (2004).
[7]Y. Sun, and Y. Xia, “Shape-controlled Synthesis of Gold and Silver Nanoparticles”, Science, 298, 2176 (2002).
[8]L. J. Sherry, S. Chang, B.J. Wiley, Y. Xia, G. C. Schatz, and R. P. Van Duyne. "Localized Surface Plasmon Resonance Spectroscopy of Single Silver Nanocubes", Nano. Lett., 5, 2034-2038 (2005).
[9]Y. H. Su, W. H. Lai, W. Y. Chen, M. H. Hon, and S. H. Chang, “Surface plasmon resonance of gold nano-sea-urchin”, Appl. Phys. Lett., 90, 181905 (2007).
[10]I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles”, Phys. Rev. B, 72, 155412 (2005).
[11]N. Berkovitch, P. Ginzburg, and M. Orenstein, “Concave plasmonic particles: broad-band geometrical tunability in the near-infrared”, Nano Letters, 10, 1405-1408 (2010).
[12]Y. H. Su, S. L Tu, S. W. Tseng, Y. C. Chang, S. H. Change and W. M. Zhang, “Influence of surface plasmon resonance on the emission intermittency of photoluminescence from gold nano-sea-urchins”, Nanoscale, 2, 2639-2646 (2010).
[13]F. W. King, R.P. Van Duyne, G.C. Schatz, "Theory of Raman Scattering by Molecules Adsorbed on Electrode Surfaces", J. Chem. Phys., 69, 4472-4481, 1978.
[14]A. Taflove, S. C. Hagness, Computational Electrodynamics, 3rd ed., Artech House (2005).
[15]蘇于倫, “Transformation of Optical Properties between Plasmonic and Non-plasmonic Nano-structures” (National Chen Kung University, Ph,D Thesis, pp.67-87, 2015)
[16]Isaak D. Mayergoyz, Donald R. Fredkin, and Zhenyu Zhang, “Electrostatic (plasmon) resonances in nanoparticles”, Phys. Rev. B, 72, 155412 (2005).
[17]Abdul-Majid Wazwaz, Fresfolm Integral Equations. In: Linear and Nonnlinear Integral Equations, pp. 119-173, Springer (2011).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top