跳到主要內容

臺灣博碩士論文加值系統

(34.204.181.91) 您好!臺灣時間:2023/10/05 03:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖鎮毅
研究生(外文):Liao, Chen-Yi
論文名稱:以熱蒸鍍法製備氧化鋅界面披覆層基於PC61BM電子傳輸層之鈣鈦礦太陽能電池特性研究
論文名稱(外文):Investigation of perovskite solar cells with PC61BM electron transport layer covered by ZnO interface layer using thermal evaporation deposition
指導教授:李欣縈
指導教授(外文):Lee, Hsin-Ying
口試委員:李清庭林祐仲劉代山
口試委員(外文):Lee, Ching-TingLin, Yow-JonLiu, Day-Shan
口試日期:2021-08-24
學位類別:碩士
校院名稱:國立成功大學
系所名稱:光電科學與工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:84
中文關鍵詞:鈣鈦礦太陽能電池PC61BM 電子傳輸層熱蒸鍍法氧化鋅界面披覆層掃描式電子顯微鏡光激發螢光光譜時間解析光激發螢光光譜
外文關鍵詞:perovskite solar cellsPC61BM ETLthermal evaporatorZnO interface layer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:72
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要 I
Abstract III
致謝 IX
目錄 XI
表目錄 XIV
圖目錄 XV
第一章 序論 1
1.1 前言 1
1.2 研究動機 2
1.3 論文架構 3
第二章 太陽能電池原理與介紹 6
2.1 太陽能電池簡介 6
2.2 有機太陽能電池介紹 7
2.2.1 染料敏化太陽能電池 7
2.2.2 高分子有機太陽能電池 8
2.2.3小分子有機太陽能電池 9
2.2.4 鈣鈦礦有機太陽能電池 10
2.3 有機材料能帶理論 12
2.4 有機太陽能電池工作原理 13
2.5 太陽能電池之等效電路 15
2.6 太陽能電池之電性參數 18
2.7 太陽能電池之效率改善 21
第三章 實驗方法與儀器介紹 29
3.1 製程機台簡介與原理 29
3.1.1 磁控式射頻濺鍍系統 29
3.1.2 熱蒸鍍物理氣相沉積系統 29
3.2 量測機台簡介與原理 30
3.2.1 轉換效率量測系統 30
3.2.2 暗電流量測系統 30
3.2.3 外部量子轉換效率量測系統 30
3.2.4 掃描式電子顯微鏡 31
3.2.5 光激發螢光頻譜儀 31
3.2.6 時間解析光激發螢光頻譜儀 32
3.2.7 分光光譜儀量測系統 32
3.3 實驗藥品介紹 33
3.4 實驗方法步驟 34
3.4.1 基板清潔 34
3.4.2 定義陽極圖形 35
3.4.3 製作電洞輔助層 36
3.4.4 製作電洞傳輸層 36
3.4.5 製作主動層 37
3.4.6 製作電子傳輸層 38
3.4.7 製作界面披覆層 39
3.4.8 製作陰極 39
第四章 實驗結果與討論 49
4.1 PC61BM電子傳輸層最佳化 49
4.1.1 電子傳輸層之薄膜特性分析 49
4.1.2 不同濃度電子傳輸層之鈣鈦礦太陽能電池量測分析 52
4.1.3 不同厚度電子傳輸層之鈣鈦礦太陽能電池量測分析 53
4.2 氧化鋅界面披覆層最佳化 54
4.2.1 界面披覆層之薄膜特性分析 55
4.2.2 具界面披覆層之鈣鈦礦太陽能電池量測分析 56
第五章 結論與未來展望 73
參考文獻 75
[1] K. W. J. Barnham, M. Mazzer, and B. Clive, “Resolving the energy crisis: Nuclear or photovoltaics?,” Nat. Mater., vol. 5, pp. 161‐164, 2006.
[2] C. Azar, K. Lindgren, and B. A. Andersson, “Global energy scenarios meeting stringent CO2 constraints-cost-effective fuel choices in the transportation sector,” Energy Policy, vol. 31, pp. 961‐976, 2003.
[3] B. Kim, J. Kim, M. Kim, B. D. Kim, S. Jo, S. Park, J. Son, S. Hwang, S. Dugasani, I. Chang, M. Kim, and W. Liu, “Ternary and senary representations using DNA double-crossover tiles,” Nanotechnology, vol. 10, pp. 105601-1‐105601-6, 2016.
[4] K. Ryu, Y. J. Lee, M. Ju, H. Choi, B. Kim, J. Lee, W. Oh, K. Choi, N. Balaji, and J. Yi, “Optimal indium tin oxide layer as anti reflection coating for crystalline silicon solar cell with shallow emitter,” Thin Solid Films, vol. 521, pp. 50‐53, 2012.
[5] H. Y. Lee, H. L. Huang, and C. T. Lee, “Performance enhancement of inverted polymer solar cells using roughened al-doped ZnO nanorod array,” Appl. Phys. Express, vol. 5, pp. 122302-1‐122302-4, 2012.
[6] National renewable energy laboratory, “Best research-cell efficiency chart,” 2020.
[7] M. Yamaguchi, “III-V compound multi-junction solar cells: present and future,” Sol. Energy Mater. Sol. Cells, vol. 75, pp. 261‐269, 2003.
[8] G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Graẗzel, S. Mhaisalkar, and T. C. Sum, “Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3,” Science, vol. 342, pp. 344‐347, 2013.
[9] C. Kamaraki, A. Zachariadis, C. Kapnopoulos, E. Mekeridis, C. Gravalidis, A. Laskarakis, and S. Logothetidis, “Efficient flexible printed perovskite solar cells based on lead acetate precursor,” Sol. Energy, vol. 176, pp. 406‐411, 2018.
[10] C. Chen, Y. Zhai, F. Li, F. Tan, G. Yue, W. Zhang, and M. Wang, “High efficiency CH¬3NH3PbI3:CdS perovskite solar cells with CuInS2 as the hole transporting layer,” J. Power Sources, vol. 341, pp. 396‐403, 2017.
[11] Y. Fu, Q. Song, T. Lin, Y. Wang, X. Sun, Z. Su, B. Chu, F. Jin, H. Zhao, W. Li, and C. S. Lee, “High performance photomultiplication perovskite photodetectors with PC60BM and NPB as the interlayers,” Org. Electron., vol. 51, pp. 200‐206, 2017.
[12] T. Jiu, Y. Li, and Y. Li, “New method for the synthesis of a highly-conjugated acene material and its application in perovskite solar cells,” Mater. Chem. Front., vol. 1, pp. 2261‐2264, 2017.
[13] K. Lee, J. Ryu, H. Yu, J. Yun, J. Lee, and J. Jang, “Enhanced efficiency and air-stability of NiOx-based perovskite solar cells via PCBM electron transport layer modification with Triton X-100,” Nanoscale, vol. 9, pp. 16249‐16255, 2017.
[14] C. Kuang, G. Tang, T. Jiu, H. Yang, H. Liu, B. Li, W. Luo, X. Li, W. Zhang, F. Lu, J. Fang, and Y. Li, “Highly efficient electron transport obtained by doping PCBM with graphdiyne in planar-heterojunction perovskite solar cells,” Nano Lett., vol. 15, pp. 2756‐2762, 2015.
[15] S. Ahn, W. Jang, J. H. Park, and D. H. Wang, “Morphology fixing agent for [6,6]-phenyl C61-butyric acid methyl ester (PC60BM) in planar-type perovskite solar cells for enhanced stability,” RSC Adv., vol. 6, pp. 51513‐51519, 2016.
[16] J. H. Tsai, M. C. Tsai, C. Y. Sung, and P. T. Huang, “Significant increase in current density of inverted polymer solar cells by induced-crystallization of sol-gel ZnO embedded with ZnO-NP,” Org. Electron., vol. 86, pp. 105891-1‐105891-7, 2020.
[17] G. Niu, W. Li, F. Meng, L. Wang, H. Dong, and Y. Qiu, “Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells,” J. Mater.Chem. A, vol. 2, pp. 705‐710, 2014.
[18] J. You, L. Meng, T. B. Song, T. F. Guo, Y. M. Yang, W. H. Chang, Z. Hong, H. Chen, H. Zhou, Q. Chen, Y. Liu, N. D. Marco1, and Y. Yang, “Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers,” Nat. Nanotechnol., vol. 11, pp. 75‐81, 2016.
[19] A. K. K. Kyaw, D. H. Wang, D. Wynands, J. Zhang, T. Q. Nguyen, G. C. Bazan, and A. J. Heeger, “Improved light harvesting and improved efficiency by insertion of an optical spacer (ZnO) in solution-processed small-molecule solar cells,” Nano Lett., vol. 13, pp. 3796‐3801, 2013.
[20] P. Beckmann, and A. Spizzichino, “The scattering of electromagnetic waves from rough surfaces/Petr Beckmann, Andre Spizzichino,” Version details - Trove. Oxford, 1963.
[21] H. Iftikhar, G. G. Sonai, S. G. Hashmi, A. F. Nogueira, and P. D. Lund, “Progress on electrolytes development in dye-sensitized solar cells,” Materials, vol. 12, pp. 1998-1‐1998-68, 2019.
[22] S. Mahalingam, A. Manap, A. Omar, F. W. Low, N. F. Afandi, C. H. Chia, and N. A. Rahim, “Functionalized graphene quantum dots for dye-sensitized solar cell: Key challenges, recent developments and future prospects,” Renew. Sust. Energ. Rev., vol. 144, pp. 110999-1‐110999-21, 2021.
[23] B. O’Regan, and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, vol. 353, pp. 737‐740, 1991.
[24] T. Zhang, C. An, Q. Lv, J. Qin, Y. Cui, Z. Zheng, B. Xu, S. Zhang, J. Zhang, C. He, and J. Hou, “Optimizing polymer aggregation and blend morphology for boosting the photovoltaic performance of polymer solar cells via a random terpolymerization strategy,” J. Energy Chem., vol. 59, pp. 30‐37, 2021.
[25] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, “Photoinduced electron transfer from a conducting polymer to buckminsterfullerene,” Science, vol. 258, pp. 1474‐1476, 1992.
[26] K. Matsumura, and A. Takahashit, “A schottky barrier type solar cell using polyacetylene,” Jpn. J. Appl. Phys., vol. 20, p. 127‐129, 1981.
[27] G. Yu, C. Zhang, and A. J. Heeger, “Dual-function semiconducting polymer devices: Light-emitting and photodetecting diodes,” Appl. Phys. Lett., vol. 64, pp. 1540‐1542, 1994.
[28] M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, “Design rules for donors in bulk-heterojunction solar cells-towards 10 % energy-conversion efficiency,” Adv. Mater., vol. 18, pp. 789‐794, 2006.
[29] G. Cao, and C. J. Brinker, “Annual review of nano research,” World Scientific, 2006.
[30] C. W. Tang, “Two-layer organic photovoltaic cell,” Appl. Phys. Lett., vol. 48, pp. 183‐185, 1986.
[31] P. Peumans, and S. R. Forrest, “Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells,” Appl. Phys. Lett., vol. 79, pp. 126‐128, 2001.
[32] Y. Wang, Y. Wang, L. Zhu, H. Liu, J. Fang, X. Guo, F. Liu, Z. Tang, M. Zhang, and Y. Li, “A novel wide-bandgap small molecule donor for high efficiency all-small-molecule organic solar cells with small non-radiative energy losses,” Energy Environ. Sci., vol.13, pp. 1309‐1317, 2020.
[33] H. Sun, P. Dai, X. Li, J. Ning, S. Wang, and Y. Qi, “Strategies and methods for fabricating high quality metal halide perovskite thin films for solar cells,” J. Energy Chem., vol. 60, pp. 330‐333, 2021.
[34] C. Li, X. Lu, W. Ding, L. Feng, Y. Gao, and Z. Guo, “Formability of ABX3 (X = F, Cl, Br, I) halide perovskites,” Acta Crystallogr. Sect. B Struct. Sci., vol. 64, pp. 702‐707, 2008.
[35] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc., vol. 131, pp. 6050‐6051, 2009.
[36] M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature, vol. 501, pp. 395‐398, 2013.
[37] M. Saliba, T. Matsui, J. Y. Seo, K. Domanski, J. P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, “Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency,” Energy Environ. Sci., vol. 9, pp. 1989‐1997, 2016.
[38] W. S. Yang, B. W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, and S. I. Seok, “Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells,” Science, vol. 356, pp. 1376‐1379, 2017.
[39] Z. Tan, J. Zhao, J. Sun, J. Zhao, X. He, Z. Liu, L. Zhu, X. Cheng, and C. Zhou, “CHCl3-Dependent emission color and jumping behavior of cyclic chalcone single crystals: the halogen bond network effect,” Crystals, vol. 11, pp. 530-1‐530-8, 2021.
[40] 傅聖文, "外應力對可撓式有機太陽能電池之影響," 國立成功大學電機工程研究所碩士論文, 2009.
[41] M. Pope, and C. E. Swenberg, “Electronic processes in organic crystals and polymers (2nd ed.),” Oxford University Press, 1999.
[42] M. Zhang, X. Xu, L. Yu, and Q. Peng, “Efficient wide-band-gap copolymer donors for organic solar cells with perpendicularly placed benzodithiophene units,” J. Power Sources, vol. 499, pp. 229961-1‐229961-8, 2021.
[43] N. Tokmoldin, J. Vollbrecht, S. M. Hosseini, B. Sun, L. P. Toro, H. Y. Woo, Y. Zou, D. Neher, and S. Shoaee, “Explaining the fill-Factor and photocurrent losses of nonfullerene acceptor-based solar cells by probing the long-range charge carrier diffusion and drift lengths,” Adv. Energy Mater., vol. 11, pp. 2100804-1‐2100804-9, 2021.
[44] H. Hoppe, and N. S. Sariciftci, “Organic solar cells: An overview,” J. Mater. Res., vol. 19, pp. 1924‐1945, 2004.
[45] P. K. Nayak, “Exciton binding energy in small organic conjugated molecule,” Synth. Met., vol. 174, pp. 42‐45, 2013.
[46] H. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H. S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, “Interface engineering of highly efficient perovskite solar cells,” Science, vol. 345, no. 6196, pp. 542‐546, 2014.
[47] S. Y. Park, S. Chandrabose, M. B. Price, H. S. Ryu, T. H. Lee, Y. S. Shin, Z. Wu, W. Lee, K. Chen, S. Dai, J. Zhu, P. Xue, X. Zhan, H. Y. Woo, J. Y. Kim, and J. M. Hodgkiss, “Photophysical pathways in efficient bilayer organic solar cells: the importance of interlayer energy transfer,” Nano Energy, vol. 84, pp. 105924-1‐105924-9, 2021.
[48] Y. J. Cheng, S. H. Yang, and C. S. Hsu, “Synthesis of conjugated polymers for organic solar cell applications,” Chem. Rev., vol. 109, pp. 5868‐5923, 2009.
[49] 翁敏航, "Solar cell 太陽能電池," 臺灣東華書局股份有限公司, 2010.
[50] M. N. Mustafa, and Y. Sulaiman, “Review on the effect of compact layers and light scattering layers on the enhancement of dye-sensitized solar cells,” Sol. Energy, vol. 215, pp. 26‐43, 2021.
[51] A. Moliton, and J. M. Nunzi, “How to model the behaviour of organic photovoltaic cells,” Polym. Int., vol. 55, pp. 583‐600, 2006.
[52] B. Qi, and J. Wang, “Open-circuit voltage in organic solar cells,” J. Mater. Chem., vol. 22, pp. 24315‐24325, 2012.
[53] H. Zhang, E. J. Miller, E. T. Yu, C. Poblenz, and J. S. Speck, “Measurement of polarization charge and conduction-band offset at InxGa1-xN/GaN heterojunction interfaces,” Appl. Phys. Lett., vol. 84, pp. 4644‐4646, 2004.
[54] T. Liang, T. Fu, C. Hu, X. Chen, S. Su, and J. Chen, “Optimum matching of photovoltaic thermophotovoltaic cells efficiently utilizing full-spectrum solar energy,” Renew. Energy, vol. 173, pp. 942‐952, 2021.
[55] R. F. Bunshah, and A. C. Raghuram, “Activated reactive evaporation process for high rate deposition of compounds,” J. Vac. Sci. Technol., vol. 9, pp. 1385‐1388, 1972.
[56] 羅聖全, "科學基礎研究之重要利器-掃描式電子顯微鏡(SEM)," 科學研習, vol. 52, pp. 4‐6, 2013.
[57] E. W. Hughes, and W. N. Lipscomb, “The crystal structure of methylammonium chloride,” J. Am. Chem. Soc., vol. 68, pp. 1970‐1975, 1946.
[58] T. M. Schweizer, “Electrical characterization and investigation of the piezoresistive effect of PEDOT:PSS thin films,” Master Thesis, Georgia Institute of Technology, pp. 15‐17, 2005.
[59] J. C. Hummelen, B. W. Knight, F. LePeq, F. Wudl, J. Yao, and C. L. Wilkins, “Preparation and characterization of fulleroid and methanofullerene derivatives,” J. Org. Chem., vol. 60, pp. 532‐538, 1995.
[60] G. S. Chen, Y. C. Chen, C. T. Lee, and H. Y. Lee, “Performance improvement of perovskite solar cells using electron and hole transport layers,” Sol. Energy, vol. 174, pp. 897‐900, 2018.
[61] S. Dong, Y. Wan, Y. Wang, Y. Yang, Y. Wang, X. Zhang, H. Cao, W. Qin, L. Yang, C. Yao, Z. Ge, and S. Yin, “Polyethylenimine as a dual functional additive for electron transporting layer in efficient solution processed planar heterojunction perovskite solar cells,” RSC Adv., vol. 6, pp. 57793‐57798, 2016.
[62] L. Wan, W. Zhang, Y. Wu, X. Li, C. Song, Y. He, W. Zhang, and J. Fang, “Efficient light harvesting with a nanostructured organic electron-transporting layer in perovskite solar cells,” Nanoscale, vol. 11, pp. 9281‐9286, 2019.
[63] S. Sutthana, K. Hongsith, P. Ruankham, D. Wongratanaphisan, A. Gardchareon, S. Phadungdhitidhada, D. Boonyawan, P. Kumnorkaew, A. Tuantranont, and S. Choopun, “Interface modification of CH3NH3PbI3/PCBM by pre-heat treatment for efficiency enhancement of perovskite solar cells,” Curr. Appl. Phys, vol. 17, pp. 488‐494, 2007.
[64] H. I. Kim, M. J. Kim, K. Choi, C. Lim, Y. H. Kim, S. K. Kwon, and T. Park, “Improving the performance and stability of inverted planar flexible perovskite solar cells employing a novel NDI-based polymer as the electron transport layer,” Adv. Energy Mater., vol. 8, pp. 1702872-1‐1702872-7, 2018.
[65] Y. Huang, D. Zhang, M. Wu, G. Yang, Z. Wang, and J. Yu, “A mixed heterojunction layer for high performance and stability p-i-n-based perovskite solar cells ,” IEEE J. Photovolt., vol. 11, pp.679‐684, 2021.
[66] T. Jiang, and W. Fu, “Improved performance and stability of perovskite solar cells with bilayer electron-transporting layers,” RSC Adv., vol. 8, pp. 5897‐5901, 2018.
[67] P. S. Chen, T. H. Lee, L. W. Lai, and C. T. Lee, “Schottky mechanism for Ni/Au contact with chlorine-treated n-type GaN layer,” J. Appl. Phys., vol. 101, pp. 024507-1‐024507-4, 2007.
[68] L. W. Lai, and C. T. Lee, “Investigation of optical and electrical properties of ZnO thin films,” Mater. Chem. Phys., vol. 110, pp. 393‐396, 2008.
[69] J. Huang, X. Yu, J. Xie, C. Z. Li, Y. Zhang, D. Xu, Z. Tang, C. Cui, and D. Yang, “Fulleropyrrolidinium iodide as an efficient electron transport layer for air-stable planar perovskite solar cells,” ACS Appl. Mater. Interfaces, vol. 8, pp. 34612‐34619, 2016.
[70] S. Park, W. Jang, and D. H. Wang, “Alignment of cascaded band-gap via PCBM/ZnO hybrid interlayers for efficient perovskite photovoltaic cells,” Macromol. Res., vol. 26, pp. 472‐476, 2018.
電子全文 電子全文(網際網路公開日期:20261020)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊