[1] K. W. J. Barnham, M. Mazzer, and B. Clive, “Resolving the energy crisis: Nuclear or photovoltaics?,” Nat. Mater., vol. 5, pp. 161‐164, 2006.
[2] C. Azar, K. Lindgren, and B. A. Andersson, “Global energy scenarios meeting stringent CO2 constraints-cost-effective fuel choices in the transportation sector,” Energy Policy, vol. 31, pp. 961‐976, 2003.
[3] B. Kim, J. Kim, M. Kim, B. D. Kim, S. Jo, S. Park, J. Son, S. Hwang, S. Dugasani, I. Chang, M. Kim, and W. Liu, “Ternary and senary representations using DNA double-crossover tiles,” Nanotechnology, vol. 10, pp. 105601-1‐105601-6, 2016.
[4] K. Ryu, Y. J. Lee, M. Ju, H. Choi, B. Kim, J. Lee, W. Oh, K. Choi, N. Balaji, and J. Yi, “Optimal indium tin oxide layer as anti reflection coating for crystalline silicon solar cell with shallow emitter,” Thin Solid Films, vol. 521, pp. 50‐53, 2012.
[5] H. Y. Lee, H. L. Huang, and C. T. Lee, “Performance enhancement of inverted polymer solar cells using roughened al-doped ZnO nanorod array,” Appl. Phys. Express, vol. 5, pp. 122302-1‐122302-4, 2012.
[6] National renewable energy laboratory, “Best research-cell efficiency chart,” 2020.
[7] M. Yamaguchi, “III-V compound multi-junction solar cells: present and future,” Sol. Energy Mater. Sol. Cells, vol. 75, pp. 261‐269, 2003.
[8] G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Graẗzel, S. Mhaisalkar, and T. C. Sum, “Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3,” Science, vol. 342, pp. 344‐347, 2013.
[9] C. Kamaraki, A. Zachariadis, C. Kapnopoulos, E. Mekeridis, C. Gravalidis, A. Laskarakis, and S. Logothetidis, “Efficient flexible printed perovskite solar cells based on lead acetate precursor,” Sol. Energy, vol. 176, pp. 406‐411, 2018.
[10] C. Chen, Y. Zhai, F. Li, F. Tan, G. Yue, W. Zhang, and M. Wang, “High efficiency CH¬3NH3PbI3:CdS perovskite solar cells with CuInS2 as the hole transporting layer,” J. Power Sources, vol. 341, pp. 396‐403, 2017.
[11] Y. Fu, Q. Song, T. Lin, Y. Wang, X. Sun, Z. Su, B. Chu, F. Jin, H. Zhao, W. Li, and C. S. Lee, “High performance photomultiplication perovskite photodetectors with PC60BM and NPB as the interlayers,” Org. Electron., vol. 51, pp. 200‐206, 2017.
[12] T. Jiu, Y. Li, and Y. Li, “New method for the synthesis of a highly-conjugated acene material and its application in perovskite solar cells,” Mater. Chem. Front., vol. 1, pp. 2261‐2264, 2017.
[13] K. Lee, J. Ryu, H. Yu, J. Yun, J. Lee, and J. Jang, “Enhanced efficiency and air-stability of NiOx-based perovskite solar cells via PCBM electron transport layer modification with Triton X-100,” Nanoscale, vol. 9, pp. 16249‐16255, 2017.
[14] C. Kuang, G. Tang, T. Jiu, H. Yang, H. Liu, B. Li, W. Luo, X. Li, W. Zhang, F. Lu, J. Fang, and Y. Li, “Highly efficient electron transport obtained by doping PCBM with graphdiyne in planar-heterojunction perovskite solar cells,” Nano Lett., vol. 15, pp. 2756‐2762, 2015.
[15] S. Ahn, W. Jang, J. H. Park, and D. H. Wang, “Morphology fixing agent for [6,6]-phenyl C61-butyric acid methyl ester (PC60BM) in planar-type perovskite solar cells for enhanced stability,” RSC Adv., vol. 6, pp. 51513‐51519, 2016.
[16] J. H. Tsai, M. C. Tsai, C. Y. Sung, and P. T. Huang, “Significant increase in current density of inverted polymer solar cells by induced-crystallization of sol-gel ZnO embedded with ZnO-NP,” Org. Electron., vol. 86, pp. 105891-1‐105891-7, 2020.
[17] G. Niu, W. Li, F. Meng, L. Wang, H. Dong, and Y. Qiu, “Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells,” J. Mater.Chem. A, vol. 2, pp. 705‐710, 2014.
[18] J. You, L. Meng, T. B. Song, T. F. Guo, Y. M. Yang, W. H. Chang, Z. Hong, H. Chen, H. Zhou, Q. Chen, Y. Liu, N. D. Marco1, and Y. Yang, “Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers,” Nat. Nanotechnol., vol. 11, pp. 75‐81, 2016.
[19] A. K. K. Kyaw, D. H. Wang, D. Wynands, J. Zhang, T. Q. Nguyen, G. C. Bazan, and A. J. Heeger, “Improved light harvesting and improved efficiency by insertion of an optical spacer (ZnO) in solution-processed small-molecule solar cells,” Nano Lett., vol. 13, pp. 3796‐3801, 2013.
[20] P. Beckmann, and A. Spizzichino, “The scattering of electromagnetic waves from rough surfaces/Petr Beckmann, Andre Spizzichino,” Version details - Trove. Oxford, 1963.
[21] H. Iftikhar, G. G. Sonai, S. G. Hashmi, A. F. Nogueira, and P. D. Lund, “Progress on electrolytes development in dye-sensitized solar cells,” Materials, vol. 12, pp. 1998-1‐1998-68, 2019.
[22] S. Mahalingam, A. Manap, A. Omar, F. W. Low, N. F. Afandi, C. H. Chia, and N. A. Rahim, “Functionalized graphene quantum dots for dye-sensitized solar cell: Key challenges, recent developments and future prospects,” Renew. Sust. Energ. Rev., vol. 144, pp. 110999-1‐110999-21, 2021.
[23] B. O’Regan, and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, vol. 353, pp. 737‐740, 1991.
[24] T. Zhang, C. An, Q. Lv, J. Qin, Y. Cui, Z. Zheng, B. Xu, S. Zhang, J. Zhang, C. He, and J. Hou, “Optimizing polymer aggregation and blend morphology for boosting the photovoltaic performance of polymer solar cells via a random terpolymerization strategy,” J. Energy Chem., vol. 59, pp. 30‐37, 2021.
[25] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, “Photoinduced electron transfer from a conducting polymer to buckminsterfullerene,” Science, vol. 258, pp. 1474‐1476, 1992.
[26] K. Matsumura, and A. Takahashit, “A schottky barrier type solar cell using polyacetylene,” Jpn. J. Appl. Phys., vol. 20, p. 127‐129, 1981.
[27] G. Yu, C. Zhang, and A. J. Heeger, “Dual-function semiconducting polymer devices: Light-emitting and photodetecting diodes,” Appl. Phys. Lett., vol. 64, pp. 1540‐1542, 1994.
[28] M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, “Design rules for donors in bulk-heterojunction solar cells-towards 10 % energy-conversion efficiency,” Adv. Mater., vol. 18, pp. 789‐794, 2006.
[29] G. Cao, and C. J. Brinker, “Annual review of nano research,” World Scientific, 2006.
[30] C. W. Tang, “Two-layer organic photovoltaic cell,” Appl. Phys. Lett., vol. 48, pp. 183‐185, 1986.
[31] P. Peumans, and S. R. Forrest, “Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells,” Appl. Phys. Lett., vol. 79, pp. 126‐128, 2001.
[32] Y. Wang, Y. Wang, L. Zhu, H. Liu, J. Fang, X. Guo, F. Liu, Z. Tang, M. Zhang, and Y. Li, “A novel wide-bandgap small molecule donor for high efficiency all-small-molecule organic solar cells with small non-radiative energy losses,” Energy Environ. Sci., vol.13, pp. 1309‐1317, 2020.
[33] H. Sun, P. Dai, X. Li, J. Ning, S. Wang, and Y. Qi, “Strategies and methods for fabricating high quality metal halide perovskite thin films for solar cells,” J. Energy Chem., vol. 60, pp. 330‐333, 2021.
[34] C. Li, X. Lu, W. Ding, L. Feng, Y. Gao, and Z. Guo, “Formability of ABX3 (X = F, Cl, Br, I) halide perovskites,” Acta Crystallogr. Sect. B Struct. Sci., vol. 64, pp. 702‐707, 2008.
[35] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc., vol. 131, pp. 6050‐6051, 2009.
[36] M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature, vol. 501, pp. 395‐398, 2013.
[37] M. Saliba, T. Matsui, J. Y. Seo, K. Domanski, J. P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, “Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency,” Energy Environ. Sci., vol. 9, pp. 1989‐1997, 2016.
[38] W. S. Yang, B. W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, and S. I. Seok, “Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells,” Science, vol. 356, pp. 1376‐1379, 2017.
[39] Z. Tan, J. Zhao, J. Sun, J. Zhao, X. He, Z. Liu, L. Zhu, X. Cheng, and C. Zhou, “CHCl3-Dependent emission color and jumping behavior of cyclic chalcone single crystals: the halogen bond network effect,” Crystals, vol. 11, pp. 530-1‐530-8, 2021.
[40] 傅聖文, "外應力對可撓式有機太陽能電池之影響," 國立成功大學電機工程研究所碩士論文, 2009.[41] M. Pope, and C. E. Swenberg, “Electronic processes in organic crystals and polymers (2nd ed.),” Oxford University Press, 1999.
[42] M. Zhang, X. Xu, L. Yu, and Q. Peng, “Efficient wide-band-gap copolymer donors for organic solar cells with perpendicularly placed benzodithiophene units,” J. Power Sources, vol. 499, pp. 229961-1‐229961-8, 2021.
[43] N. Tokmoldin, J. Vollbrecht, S. M. Hosseini, B. Sun, L. P. Toro, H. Y. Woo, Y. Zou, D. Neher, and S. Shoaee, “Explaining the fill-Factor and photocurrent losses of nonfullerene acceptor-based solar cells by probing the long-range charge carrier diffusion and drift lengths,” Adv. Energy Mater., vol. 11, pp. 2100804-1‐2100804-9, 2021.
[44] H. Hoppe, and N. S. Sariciftci, “Organic solar cells: An overview,” J. Mater. Res., vol. 19, pp. 1924‐1945, 2004.
[45] P. K. Nayak, “Exciton binding energy in small organic conjugated molecule,” Synth. Met., vol. 174, pp. 42‐45, 2013.
[46] H. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H. S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, “Interface engineering of highly efficient perovskite solar cells,” Science, vol. 345, no. 6196, pp. 542‐546, 2014.
[47] S. Y. Park, S. Chandrabose, M. B. Price, H. S. Ryu, T. H. Lee, Y. S. Shin, Z. Wu, W. Lee, K. Chen, S. Dai, J. Zhu, P. Xue, X. Zhan, H. Y. Woo, J. Y. Kim, and J. M. Hodgkiss, “Photophysical pathways in efficient bilayer organic solar cells: the importance of interlayer energy transfer,” Nano Energy, vol. 84, pp. 105924-1‐105924-9, 2021.
[48] Y. J. Cheng, S. H. Yang, and C. S. Hsu, “Synthesis of conjugated polymers for organic solar cell applications,” Chem. Rev., vol. 109, pp. 5868‐5923, 2009.
[49] 翁敏航, "Solar cell 太陽能電池," 臺灣東華書局股份有限公司, 2010.
[50] M. N. Mustafa, and Y. Sulaiman, “Review on the effect of compact layers and light scattering layers on the enhancement of dye-sensitized solar cells,” Sol. Energy, vol. 215, pp. 26‐43, 2021.
[51] A. Moliton, and J. M. Nunzi, “How to model the behaviour of organic photovoltaic cells,” Polym. Int., vol. 55, pp. 583‐600, 2006.
[52] B. Qi, and J. Wang, “Open-circuit voltage in organic solar cells,” J. Mater. Chem., vol. 22, pp. 24315‐24325, 2012.
[53] H. Zhang, E. J. Miller, E. T. Yu, C. Poblenz, and J. S. Speck, “Measurement of polarization charge and conduction-band offset at InxGa1-xN/GaN heterojunction interfaces,” Appl. Phys. Lett., vol. 84, pp. 4644‐4646, 2004.
[54] T. Liang, T. Fu, C. Hu, X. Chen, S. Su, and J. Chen, “Optimum matching of photovoltaic thermophotovoltaic cells efficiently utilizing full-spectrum solar energy,” Renew. Energy, vol. 173, pp. 942‐952, 2021.
[55] R. F. Bunshah, and A. C. Raghuram, “Activated reactive evaporation process for high rate deposition of compounds,” J. Vac. Sci. Technol., vol. 9, pp. 1385‐1388, 1972.
[56] 羅聖全, "科學基礎研究之重要利器-掃描式電子顯微鏡(SEM)," 科學研習, vol. 52, pp. 4‐6, 2013.
[57] E. W. Hughes, and W. N. Lipscomb, “The crystal structure of methylammonium chloride,” J. Am. Chem. Soc., vol. 68, pp. 1970‐1975, 1946.
[58] T. M. Schweizer, “Electrical characterization and investigation of the piezoresistive effect of PEDOT:PSS thin films,” Master Thesis, Georgia Institute of Technology, pp. 15‐17, 2005.
[59] J. C. Hummelen, B. W. Knight, F. LePeq, F. Wudl, J. Yao, and C. L. Wilkins, “Preparation and characterization of fulleroid and methanofullerene derivatives,” J. Org. Chem., vol. 60, pp. 532‐538, 1995.
[60] G. S. Chen, Y. C. Chen, C. T. Lee, and H. Y. Lee, “Performance improvement of perovskite solar cells using electron and hole transport layers,” Sol. Energy, vol. 174, pp. 897‐900, 2018.
[61] S. Dong, Y. Wan, Y. Wang, Y. Yang, Y. Wang, X. Zhang, H. Cao, W. Qin, L. Yang, C. Yao, Z. Ge, and S. Yin, “Polyethylenimine as a dual functional additive for electron transporting layer in efficient solution processed planar heterojunction perovskite solar cells,” RSC Adv., vol. 6, pp. 57793‐57798, 2016.
[62] L. Wan, W. Zhang, Y. Wu, X. Li, C. Song, Y. He, W. Zhang, and J. Fang, “Efficient light harvesting with a nanostructured organic electron-transporting layer in perovskite solar cells,” Nanoscale, vol. 11, pp. 9281‐9286, 2019.
[63] S. Sutthana, K. Hongsith, P. Ruankham, D. Wongratanaphisan, A. Gardchareon, S. Phadungdhitidhada, D. Boonyawan, P. Kumnorkaew, A. Tuantranont, and S. Choopun, “Interface modification of CH3NH3PbI3/PCBM by pre-heat treatment for efficiency enhancement of perovskite solar cells,” Curr. Appl. Phys, vol. 17, pp. 488‐494, 2007.
[64] H. I. Kim, M. J. Kim, K. Choi, C. Lim, Y. H. Kim, S. K. Kwon, and T. Park, “Improving the performance and stability of inverted planar flexible perovskite solar cells employing a novel NDI-based polymer as the electron transport layer,” Adv. Energy Mater., vol. 8, pp. 1702872-1‐1702872-7, 2018.
[65] Y. Huang, D. Zhang, M. Wu, G. Yang, Z. Wang, and J. Yu, “A mixed heterojunction layer for high performance and stability p-i-n-based perovskite solar cells ,” IEEE J. Photovolt., vol. 11, pp.679‐684, 2021.
[66] T. Jiang, and W. Fu, “Improved performance and stability of perovskite solar cells with bilayer electron-transporting layers,” RSC Adv., vol. 8, pp. 5897‐5901, 2018.
[67] P. S. Chen, T. H. Lee, L. W. Lai, and C. T. Lee, “Schottky mechanism for Ni/Au contact with chlorine-treated n-type GaN layer,” J. Appl. Phys., vol. 101, pp. 024507-1‐024507-4, 2007.
[68] L. W. Lai, and C. T. Lee, “Investigation of optical and electrical properties of ZnO thin films,” Mater. Chem. Phys., vol. 110, pp. 393‐396, 2008.
[69] J. Huang, X. Yu, J. Xie, C. Z. Li, Y. Zhang, D. Xu, Z. Tang, C. Cui, and D. Yang, “Fulleropyrrolidinium iodide as an efficient electron transport layer for air-stable planar perovskite solar cells,” ACS Appl. Mater. Interfaces, vol. 8, pp. 34612‐34619, 2016.
[70] S. Park, W. Jang, and D. H. Wang, “Alignment of cascaded band-gap via PCBM/ZnO hybrid interlayers for efficient perovskite photovoltaic cells,” Macromol. Res., vol. 26, pp. 472‐476, 2018.