跳到主要內容

臺灣博碩士論文加值系統

(44.211.117.197) 您好!臺灣時間:2024/05/22 01:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡牧旻
研究生(外文):Tsai, Mu-Min
論文名稱:具粗糙化結構晶種層之還原型-氧化石墨烯/氧化鋅奈米柱異質接面NO2氣體感測器之研究
論文名稱(外文):Investigation of reduced graphene oxide/ZnO nanorod heterojunction NO2 gas sensors with roughed seed layer
指導教授:李欣縈
指導教授(外文):Lee, Hsin-Ying
口試委員:李清庭林祐仲劉代山
口試委員(外文):Lee, Ching-TingLin, Yow-JonLiu, Day-Shan
口試日期:2021-08-24
學位類別:碩士
校院名稱:國立成功大學
系所名稱:光電科學與工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:67
中文關鍵詞:還原型-氧化石墨烯異質接面結構二氧化氮氣體感測器粗糙化結構氧化鋅奈米柱
外文關鍵詞:reduced graphene oxideheterojunctionNO2 gas sensorroughed seed layerZnO nanorod
相關次數:
  • 被引用被引用:0
  • 點閱點閱:79
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Abstract I
致謝 IX
摘要 XI
目錄 XIV
表目錄 XVII
圖目錄 XVIII
第一章 序論 1
1.1 前言 1
1.2 二氧化氮氣體感測器發展之重要性 2
1.3 研究動機 3
第二章 理論與文獻回顧 5
2.1 氧化鋅特性與應用及製備 5
2.1.1 氧化鋅之特性與應用 5
2.1.2 氧化鋅之製備 5
2.2 石墨烯特性與應用及製備 7
2.2.1 石墨烯之特性與應用 7
2.2.2 石墨烯之製備 7
2.3 氣體感測器介紹 8
2.3.1 氣體感測器的種類 8
2.3.2 金屬氧化物半導體型氣體感測器之感測原理 10
2.3.3 石墨烯氣體感測器之感測原理 12
2.3.4 同質接面與異質接面之氣體感測器 12
第三章 實驗方法與製程步驟 16
3.1 實驗藥品 16
3.2 元件製程機台 17
3.2.1 電子束蒸鍍系統 17
3.2.2 雷射干涉微影系統 17
3.2.3 射頻磁控濺鍍系統 18
3.2.4 高溫熱退火系統 18
3.3 元件製作流程 19
3.3.1 基板清潔 19
3.3.2 製作電極 19
3.3.3 粗糙化結構晶種層製作及氧化石墨烯薄膜之製備 20
3.3.4 水熱法成長氧化石墨烯/氧化鋅奈米柱 23
3.3.5 熱退火處理 24
3.4 分析與量測機台 24
3.4.1 拉曼光譜分析儀 24
3.4.2 掃描式電子顯微鏡 25
3.4.3 穿透式電子顯微鏡 26
3.4.4 X射線光電子能譜儀 26
3.4.5 半導體元件氣體感測特性分析 27
第四章 實驗結果與討論 34
4.1 還原型-氧化石墨烯氣體感測器 34
4.1.1 X射線光電子能譜儀 34
4.1.2 拉曼光譜分析 35
4.1.3 還原型-氧化石墨烯氣體感測器特性 36
4.2 不同濃度摻雜氧化石墨烯/氧化鋅奈米柱 37
4.2.1 奈米柱表面形貌分析 37
4.2.2 奈米柱剖面形貌分析 38
4.3 具粗糙化結構晶種層之還原型-氧化石墨烯/氧化鋅奈米柱異質接面氣體感測器 39
第五章 結論與未來展望 55
5.1 結論 55
5.2 未來展望 56
參考文獻 57
[1]蔡嬪嬪、曾明漢, “氣體感測器之簡介、應用及市場,” 材料與社會, vol. 68, 1992.
[2]陳景森, 與陳淨修, “揭開酸雨的神祕面紗──酸雨的成因及對策,” 科學月刊, vol. 23, 1992.
[3]M. W. Ahn, K. S. Park, J. H. Heo, J. G. Park, D. W. Kim, K. J. Choi, J. H. Lee, and S. H. Hong, “Gas sensing properties of defect-controlled ZnO-nanowire gas sensor,” Appl. Phys. Lett., vol. 93, pp. 263103-1−263103-3, 2008.
[4]S. Bhatia, N. Verma, and R. Bedi, “Ethanol gas sensor based upon ZnO nanoparticles prepared by different techniques,” Results Phys., vol. 7, pp. 801−806, 2017.
[5]E. Souteyrand, D. Nicolas, E. Queau, and J. R. Martin, “Influence of surface modifications on semiconductor gas sensor behaviour,” Sens. Actuator B-Chem., vol. 26, pp. 174−178, 1995.
[6]M. Hjiri, N. Zahmouli, R. Dhahri, S. Leonardi, L. El Mir, and G. Neri, “Doped-ZnO nanoparticles for selective gas sensors,” J. Mater. Sci. Mater. Electron., vol. 28, pp. 9667−9674, 2017.
[7]M. Z. Jiao, N. V. Chien, N. V. Duy, N. D. Hoa, N. V. Hieu, K. Hjort, and H. Nguyen, “On-chip hydrothermal growth of ZnO nanorods at low temperature for highly selective NO2 gas sensor,” Mater. Lett., vol. 169, pp. 231−235, 2016.
[8]Y. Navale, S. Navale, F. Stadler, N. Ramgir, and V. Patil, “Enhanced NO2 sensing aptness of ZnO nanowire/CuO nanoparticle heterostructure-based gas sensors,” Ceram. Int., vol. 45, pp. 1513−1522, 2019.
[9]V. L. Patil, S. A. Vanalakar, N. L. Tarwal, A. P. Patil, T. D. Dongale, J. H. Kim, P. S. Patil, “Construction of Cu doped ZnO nanorods by chemical method for low temperature detection of NO2 gas,” Sens. Actuator A-Chem., vol. 299, pp. 111611-1−111611-11, 2019.
[10]P. Rai, Y. S. Kim, H. M. Song, M. K. Song, Y. T. Yu, “The role of gold catalyst on the sensing behavior of ZnO nanorods for CO and NO2 gases,” Sens. Actuator B-Chem., vol. 165, pp. 133−142, 2012.
[11]G. J. Sun, J. K. Lee, S. Choi, W. I. Lee, H. W. Kim, C. Lee, “Selective oxidizing gas sensing and dominant sensing mechanism of n-CaO-decorated n-ZnO nanorod sensors,” ACS Appl. Mater. Interfaces, vol. 9, pp. 9975−9985, 2017.
[12]Y. H. Navale, S. T. Navale, F. J. Stadler, N. S. Ramgir, V. B. Patil, “Enhanced NO2 sensing aptness of ZnO nanowire/CuO nanoparticle heterostructure-based gas sensors,” Ceram. Int., vol. 45, pp. 1513−1522, 2019.
[13]S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, “Recent progress in processing and properties of ZnO,” Progress in Materials Science, vol. 50, pp. 293−340, 2005.
[14]R. Wang, L. H. King, and A. W. Sleight, “Highly conducting transparent thin films based on zinc oxide,” J. Mater. Res., vol. 11, pp. 1659−1664, 1996.
[15]H. L. Hartnagel, A. L. Dawar, A. K. Jain, and C. Jagadish, “Semiconducting transparent thin films,” IOP Publishing, 1995.
[16]H. W. Ryua and B. S. Park, “ZnO sol-gel derives porous film for CO gas sensing,” Sens. Actuators B, vol. 96, pp. 717−722, 2003.
[17]S. Vanalakar, M. Gang, V. Patil, T. Dongale, P. Patil, and J. Kim, “Enhanced gas-sensing response of zinc oxide nanorods synthesized via hydrothermal route for nitrogen dioxide gas,” J. Electron. Mater., vol. 48, pp. 589−595, 2019.
[18]D. G. Baik and S. M. Cho, “Application of sol-del derived films for ZnO/n-Si junction solar cells,” Thin Solid Films, vol. 354, pp. 227−231, 1999.
[19]K. Kandpal and N. Gupta, “Zinc oxide thin film transistors: advances, challenges and future trends,” BEEI, vol. 5, pp. 205−212, 2016.
[20]D. K. Hwang, M. S. Oh, J. H. Lim, and S. J. Park, “ZnO thin films and light-emitting diodes,” J. Phys. D-Appl. Phys., vol. 40, pp. 387−412, 2007.
[21]M. Purica, E. Budianu, E. Rusu, M. Danila, and R. Gavrila, “Optical and structural investigation of ZnO thin films prepared by chemical vapor deposition (CVD),” Thin Solid Films, vol. 403−404, pp. 485−488, 2002.
[22]B. D. Yao, Y. F. Chan, and N. Wang, “Formation of ZnO nanostructures by a simple way of thermal evaporation,” Appl. Phys. Lett., vol. 81, pp. 757−759, 2002.
[23]P. F. Carcia, R. S. McLean, M. H. Reilly, and G. Nunes Jr., “Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering,” Appl. Phys. Lett., vol. 82, pp. 1117−1119, 2003.
[24]B. J. Jin, S. Im, and S. Y. Lee, “Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition,” Thin Solid Films, vol. 366, pp. 107−110, 2000.
[25]S. Ilican, Y. Caglar, and M. Caglar, “Preparation and characterization of ZnO thin films deposited by sol-gel spin coating method,” J. Optoelectron. Adv. Mater., vol. 10, pp. 2578−2583, 2008.
[26]蕭慕柔, “電解剝落法之石墨表面性質探討,” 國立中央大學化學工程與材料工程學系, 2012.
[27]N. D. Mermin, “Crystalline order in two dimensions,” Phys. Rev., vol. 176, pp. 250−254, 1968.
[28]S. Park and R. S. Rouff, “Chemical methods for the production of graphenes,” Nature Nanotechnology, vol. 4, pp. 217−224, 2009.
[29]K. I. Bolotina, K. J. Sikesb, Z. Jianga, M. Klimac, G. Fudenberga, J. Honec, P. Kima, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Communication, vol. 146, pp. 351−355, 2008.
[30]A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett., vol. 8, pp. 902−907, 2008.
[31]H. Bai, C. Li, and G. Shi, “Functional composite materials based on chemically converted graphene,” Advanced Materials, vol. 23, pp. 1089−1115, 2011.
[32]D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R. D. Piner, S. Stankovich, I. Jung, D. A. Field, C. A. Ventrice Jr., and R. S. Ruoff, “Chemical analysis of graphene oxide films after heat and chemical treatments by x-ray photoelectron and micro-raman spectroscopy,” Carbon, vol. 47, pp. 145−152, 2009.
[33]C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. Heer, “Electronic confinement and coherence in patterned epitaxial graphene,” Science, vol. 312, pp. 1191−1196, 2006.
[34]J. Wang, “Electrochemical sensing of explosives,” Electroynalysis, vol. 19, pp. 415−423, 2007.
[35]C. H. Han, D. W. Hong, I. J. Kim, J. Gwak, S. D. Han, and K. C. Singh, “Synthesis of Pd or Pt/titanate nanotube and its application to catalytic type hydrogen gas sensor,” Sens. Actuator B-Chem., vol. 128, pp. 320−325, 2007.
[36]S. Lenaerts, J. Roggen, and G. Maes, “FT-IR characterization of tin dioxide gas sensor materials under working conditions,” Spectroc. Acta Pt. A-Molec. Biomolec., vol. 51, pp. 883−894, 1995.
[37]Z. Fan, D. Wang, P. C. Chang, W. Y. Tseng, and J. G. Lu, “ZnO nanowire field-effect transistor and oxygen sensing property,” Appl. Phys. Lett., vol. 85, pp. 5923−5925, 2004.
[38]P. Shankar and J. B. B. Rayappan, “Gas sensing mechanism of metal oxides: the role of ambient atmosphere, type of semiconductor and gases-a review,” Sci. Lett. J., vol. 4, p. 126, 2015.
[39]M. Takata, D. Tsubone, and H. Yanagida, “Dependence of electrical conductivity of ZnO on degree of sintering,” J. Am. Ceram. Soc., vol. 59, pp. 4−8, 1976.
[40]A. Afzal, N. Cioffi, L. Sabbatini, and L. Torsi, “NOX sensors based on semiconducting metal oxide nanostructures: progress and perspectives,” Sens. Actuators B, vol. 171−172, pp. 25−42, 2012.
[41]Z. U. Abideen, J. H. Kim, J. H. Lee, J. Y. Kim, A. Mirzaei, H. W. Kim, and S. S. Kim, “Electrospun metal oxide composite nanofibers gas sensors: a review,” J. Korean Ceram. Soc., vol. 54, pp. 366−379, 2017.
[42]Z. Wang, Z. Jia, Q. Li, X. Zhang, W. Sun, J. Sun, B. Liu and B. Ha, “The enhanced NO2 sensing properties of SnO2 nanoparticles/reduced graphene oxide composite,” J. Colloid Interface Sci., vol. 537, pp. 228−237, 2019.
[43]X. Li, Y. Zhao, X. Wang, J. Wang, A. M. Gaskov and S. A. Akbar, “Reduced graphene oxide (rGO) decorated TiO2 microspheres for selective room-temperature gas sensors,” Sens. Actuators B Chem., vol. 230, pp. 330−336, 2016.
[44]O. Leenaerts, B. Partoens, and F. M. Peeters, “Adsorption of H2O, NH3, CO, NO2, and NO on graphene: a first-principles study,” Phys. Rev. B, vol. 77, pp. 125416-1−125416-6, 2008.
[45]B. Huang, Z. Li, Z. Liu, G. Zhou, S. Hao, J. Wu, B. L. Gu, and W. Duan, “Adsorption of gas molecules on graphene nanoribbons and its implication for nanoscale molecule sensor,” J. Phys. Chem. C, vol. 112, pp. 13442−13446, 2008.
[46]J. H. Bang, M. S. Choi, A. Mirzaei, Y. J. Kwon, S. S. Kim, T. W. Kim, and H. W. Kim, “Selective NO2 sensor based on Bi2O3 branched SnO2 nanowires,” Sens. Actuator B-Chem., vol. 274, pp. 356−369, 2018.
[47]M. M. Abdullah, M. H. Suhail, and S. I. Abbas, “Fabrication and testing of SnO2 thin films as a gas sensor,” Arch. Appl. Sci. Res., vol. 4, pp. 1279−1288, 2012.
[48]J. Huang, H. Ren, P. Sun, C. Gu, Y. Sun, and J. Liu, “Facile synthesis of porous ZnO nanowires consisting of ordered nanocrystallites and their enhanced gas-sensing property,” Sens. Actuator B-Chem., vol. 188, pp. 249−256, 2013.
[49]A. Mirzaei, S. Park, G. J. Sun, H. Kheel, C. Lee, and S. Lee, “Fe2O3/Co3O4 composite nanoparticle ethanol sensor,” J. Korean Phys. Soc., vol. 69, pp. 373−380, 2016.
[50]S. Park, S. Kim, H. Kheel, and C. Lee, “Oxidizing gas sensing properties of the n-ZnO/p-Co3O4 composite nanoparticle network sensor,” Sens. Actuator B-Chem., vol. 222, pp. 1193−1200, 2016.
[51]楊雲凱, “物理氣相沉積(PVD)介紹”, 國家奈米元件實驗室奈米通訊, vol. 22, pp. 33−35, 2015.
[52]B. S. Sannakashappanavar, N. A. Pattanashetti, C. Byrareddy, and A. B. Yadav, “Study of annealing effect on the growth of ZnO nanorods on ZnO seed layers,” AIP Conference Proceedings, vol. 1943, pp. 020077-1−020077-7, 2018.
[53]M. Breedon, J. Yu, W. Wlodarski, and K. Kalantar-zadeh, “ZnO nanostructured arrays grown from aqueous solutions on different substrates,” ICONN, pp. 9−12, 2008.
[54]M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Cancado, A. Jorio and R. Saito, “Studying disorder in graphite-based systems by Raman spectroscopy,” Phys. Chem. Chem. Phys, vol. 9, pp. 1276−1291, 2007.
[55]羅聖全, “科學基礎研究之重要利器—掃描式電子顯微鏡(SEM),” 科學研習, vol. 52, pp. 4−6, 2013.
[56]S. Vishwakarma, J. Upadhyay, and H. Prasad, “Physical properties of arsenic-doped tin oxide thin films,” Thin Solid Films, vol. 176, pp. 99−110, 1989.
[57]V. Anand, A. Sakthivelu, K. D. A. Kumar, S. Valanarasu, V. Ganesh, M. Shkir, S. AlFaify, and H. Algarni, “Rare earth Eu3+ Co-doped AZO thin films prepared by nebulizer spray pyrolysis technique for optoelectronics,” J. Sol-Gel Sci. Technol., vol. 86, pp. 293−304, 2018.
[58]K. Uma, E. Muniranthinam, S. Chong, T. C. K. Yang and J. H. Lin, “Fabrication of hybrid catalyst ZnO nanorod/????-Fe2O3 composites for hydrogen evolution reaction,” MDPI, pp. 5−6, 2005.
[59]M. Kamruzzaman and J. Zapien, “Effect of temperature, time, concentration, annealing, and substrates on ZnO nanorod arrays growth by hydrothermal process on hot plate,” Crystallogr. Rep., vol. 63, pp. 456−471, 2018.
[60]C. Marichy, P. A. Russo, M. Latino, J. P. Tessonnier, M. G. Willinger, N. Donato, G. Neri, and N. Pinna, “Tin dioxide–carbon heterostructures applied to gas sensing: structure-dependent properties and general sensing mechanism,” J. Phys. Chem. C, vol. 117, pp. 19729−19739, 2013.
[61]H. Y. Lee, Y. C. Heish, C. T. Lee, “High sensitivity detection of nitrogen oxide gas at room temperature using zinc oxide-reduced graphene oxide sensing membrane,” J. Alloy. Compd., vol. 773, pp.950−954, 2019.
[62]S. Vishwakarma, J. Upadhyay, and H. Prasad, “Physical properties of arsenic-doped tin oxide thin films,” Thin Solid Films, vol. 176, pp. 99−110, 1989.
[63]J. T. Robinson, F. K. Perkins, E.S. Snow, Z. Wei, and P. E. Sheehan, “Reduced graphene oxide molecular sensors,” Nano Lett., vol. 8, pp. 3137−3140, 2008.
電子全文 電子全文(網際網路公開日期:20261020)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top