跳到主要內容

臺灣博碩士論文加值系統

(44.200.101.84) 您好!臺灣時間:2023/09/25 13:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃家為
研究生(外文):Huang, Chia-Wei
論文名稱:應用表面電漿共振金奈米井陣列於膀胱癌生物標記之超靈敏無標籤感測
論文名稱(外文):Plasmonic Gold Nanowell Array for Ultra-Sensitive Label-Free Sensing of a Bladder Cancer Biomarker
指導教授:林俊宏林俊宏引用關係
指導教授(外文):Lin, Chun-Hung
口試委員:邱逸淳張雯惠張世慧
口試日期:2021-08-20
學位類別:碩士
校院名稱:國立成功大學
系所名稱:光電科學與工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:71
中文關鍵詞:侷域化表面電漿共振共振腔耦合生物感測器無標籤分子檢測膀胱癌
外文關鍵詞:localized surface plasmon resonancecavity modebiosensorlabel-free sensingbladder cancer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:45
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
膀胱癌在男性癌症的發生率排名全世界第六名,因為膀胱癌是泌尿系統常見的惡性疾病之一,目前主要檢測方式是透過膀胱鏡,但其診療過程為侵入性,會引起患者的不適感之外,術後亦有機會造成尿道感染,使得患者複檢意願降低。除了膀胱鏡外還有利用尿液細胞學的方式去判斷,但此方式靈敏度僅16-30%,因此,如何開發靈敏且特異性高的生物感測器即顯得相當重要。
近年來,有研究指出可以利用膀胱癌患者的尿液檢體,針對美國食品藥物管理局(FDA)認證的膀胱癌標籤分子「Complement Factor H (CFH)」進行辨別,分析檢體中標籤分子的含量來達到膀胱癌之診斷。此診斷方法雖然不能達到如膀胱鏡效果在臨床上的高準確度,但可透過非侵入性診療且操作人員不需進行專業儀器訓練,即可讓患者自行長期追蹤病情外,亦可節省時間與費用。
有鑑於此,本研究使用奈米金屬轉印技術,透過製程相對簡單且低成本的方式去製作雙模態之金奈米井陣列結構,藉此應用於折射率感測與無標籤分子檢測上。由於其製程簡單,感測器均勻度的相對標準偏差(RSD)為0.13%外,結合表面電漿共振與共振腔模態,使頻寬更窄獲得更好的增益效果,進而讓靈敏度達到637.31 nm/RIU,得出品質因數(FOM)為22.44。另外,在膀胱癌標籤分子CFH的檢測中,偵測極限(LoD)可達1.00×10-9 g/ml。綜上所述,此非侵入性生物感測器在偵測膀胱癌分子中極具潛力。
Bladder cancer ranks sixth in the world in the incidence of male cancers, because bladder cancer is one of the common malignant diseases of the urinary system. At present, the main detection method is through cystoscopy, but the diagnosis and treatment process are invasive and can cause discomfort to patients. In addition to feelings of the patients, there is also a chance of urinary infection after surgery, which reduces the willingness of patients to re-examine. Besides cystoscopy, urine cytology is another way to consider, but the sensitivity of this method is only 16-30%. Therefore, how to develop a sensitive and highly specific biosensor is very important.
In recent years, studies have pointed out that urine specimens of patients with bladder cancer can be used to identify the bladder cancer label molecule "Complement Factor H (CFH)" certified by the U.S. Food and Drug Administration (FDA) and analyze the label molecules in the specimens. Content to reach the diagnosis of bladder cancer, although this method cannot achieve clinically high accuracy such as the effect of cystoscopy, it can be non-invasively diagnosed and treated without the need for professional instrument training for the operator to allow patients to track their condition for a long time and save time and cost.
In view of this, this research uses nanotransfer lithography to fabricate a bimodal gold nanowell array structure through a relatively simple and low-cost method for application in refractive index sensing and label-free molecular detection. Due to its simple manufacturing process, the relative standard deviation (RSD) of the sensor uniformity is 0.13%, combined with the surface plasmon resonance and resonant cavity mode, the bandwidth is narrower, and the electric field gain effect is better, and the sensitivity can reach 637.31 nm/RIU, the figure of merit (FOM) is 22.44. In addition, in the detection of bladder cancer label molecule CFH, the detection limit (LoD) can reach 1.00×10-9 g/ml. In summary, this non-invasive biosensor has great potential in detecting bladder cancer molecules.
摘要 i
致謝 ix
目錄 x
圖次 xiii
表次 xviii
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 論文架構 4
第二章 理論原理與文獻回顧 5
2.1 表面電漿共振 5
2.1.1 傳播式表面電漿共振原理 5
2.1.2 侷域化表面電漿共振原理 7
2.1.3 傳播式表面電漿與侷域式表面電漿共振之比較 8
2.1.4 Cavity Resonance原理 9
2.2 表面電漿共振生物感測器之發展 9
2.3 膀胱癌之介紹 11
第三章 研究方法 18
3.1 奈米井陣列數值模擬方法 18
3.2 奈米井陣列結構製作 18
3.2.1 母模具製作方法 19
3.2.2 奈米轉印微影術 20
3.3 折射率靈敏度量測架構及方法 22
3.3.1 實驗設備 23
3.3.2 實驗材料 23
3.3.3 反射光譜與靈敏度的量測 23
3.4 無標籤分子鍵結 24
3.4.1 實驗設備 24
3.4.2 實驗材料 25
3.4.3 實驗材料配置 25
3.4.4 CFH分子量測 26
3.4.5 CFH分子量測方法 27
3.5 利用金奈米粒子放大CFH分子之訊號 27
3.5.1 金奈米粒子合成 27
3.5.2 利用金奈米粒子將CFH分子訊號增強 28
3.6 檢視結構之機台 30
第四章 實驗與數值模擬分析結果 36
4.1 奈米井陣列結構之光學特性模擬分析 36
4.1.1 表面電漿共振模態分析 36
4.1.2 奈米井陣列結構參數最佳化 37
4.2 奈米井陣列結構之實驗結果 38
4.2.1 奈米井陣列之靈敏度量測 39
4.2.2 基板表面改質 41
4.3 膀胱癌無標籤分子技術應用 41
4.3.1 CFH分子鍵結參數最佳化 42
4.3.2 CFH分子量測 43
第五章 討論與未來展望 64
5.1 結論 64
5.2 未來展望 64
第六章 參考文獻 66
1.A. A. Dormeny, P. A. Sohi, and M. Kahrizi, "Design and simulation of a refractive index sensor based on SPR and LSPR using gold nanostructures," Results in Physics 16, 102869 (2020).
2.E. Kretschmann and H. Raether, "Radiative decay of non-radiative surface plasmons excited by light," Z. Naturforsch. a 23, 2135-2136 (1968).
3.A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Zeitschrift für Physik A Hadrons and nuclei 216, 398-410 (1968).
4.R. C. Jorgenson and S. S. Yee, "A fiber-optic chemical sensor based on surface plasmon resonance," Sensors and Actuators B: Chemical 12, 213-220 (1993).
5.D. Kawasaki, H. Yamada, K. Maeno, K. Sueyoshi, H. Hisamoto, and T. Endo, "Core–Shell-Structured Gold Nanocone Array for Label-Free DNA Sensing," ACS Applied Nano Materials 2, 4983-4990 (2019).
6.A. D. McFarland and R. P. Van Duyne, "Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity," Nano letters 3, 1057-1062 (2003).
7.B. D. Gupta, A. M. Shrivastav, and S. P. Usha, "Surface plasmon resonance-based fiber optic sensors utilizing molecular imprinting," Sensors 16, 1381 (2016).
8.M. Couture, S. S. Zhao, and J.-F. Masson, "Modern surface plasmon resonance for bioanalytics and biophysics," Physical Chemistry Chemical Physics 15, 11190-11216 (2013).
9.S. A. Maier, Plasmonics: fundamentals and applications (Springer Science & Business Media, 2007).
10.N. Cennamo, L. Zeni, E. Catalano, F. Arcadio, and A. Minardo, "Refractive index sensing through surface plasmon resonance in light-diffusing fibers," Applied Sciences 8, 1172 (2018).
11.K. Liu, M. Xue, J. Jiang, T. Wang, P. Chang, and T. Liu, "Theoretical modeling of a coupled plasmon waveguide resonance sensor based on multimode optical fiber," Optics Communications 410, 552-558 (2018).
12.V. Amendola, R. Pilot, M. Frasconi, O. M. Maragò, and M. A. Iatì, "Surface plasmon resonance in gold nanoparticles: a review," Journal of Physics: Condensed Matter 29, 203002 (2017).
13.L. S. Live, J. Breault-Turcot, K.-L. Nguyen, and J.-F. Masson, "Enhanced SPR sensing based on micropatterned thin films," in Plasmonics in biology and medicine VIII, (International Society for Optics and Photonics, 2011), 79110B.
14.Y.-T. Long and C. Jing, Localized surface plasmon resonance based nanobiosensors (Springer, 2014).
15.K. A. Willets and R. P. Van Duyne, "Localized surface plasmon resonance spectroscopy and sensing," Annu. Rev. Phys. Chem. 58, 267-297 (2007).
16.W. H. Organization, "WHO report on cancer: setting priorities, investing wisely and providing care for all," (2020).
17.H. Boman, H. Hedelin, S. Jacobsson, and S. Holmäng, "Newly diagnosed bladder cancer: the relationship of initial symptoms, degree of microhematuria and tumor marker status," The Journal of urology 168, 1955-1959 (2002).
18.R. Kinders, T. Jones, R. Root, C. Bruce, H. Murchison, M. Corey, L. Williams, D. Enfield, and G. M. Hass, "Complement factor H or a related protein is a marker for transitional cell cancer of the bladder," Clinical Cancer Research 4, 2511-2520 (1998).
19.S. F. Shariat, M. J. Marberger, Y. Lotan, M. Sanchez-Carbayo, C. Zippe, G. Lüdecke, H. Boman, I. Sawczuk, M. G. Friedrich, and R. Casella, "Variability in the performance of nuclear matrix protein 22 for the detection of bladder cancer," The Journal of urology 176, 919-926 (2006).
20.Y. Fradet and C. Lockhard, "Performance characteristics of a new monoclonal antibody test for bladder cancer: ImmunoCyt trade mark," The Canadian journal of urology 4, 400-405 (1997).
21.A. Hopman, P. J. Poddighe, A. Smeets, O. Moesker, J. Beck, G. P. Vooijs, and F. Ramaekers, "Detection of numerical chromosome aberrations in bladder cancer by in situ hybridization," The American journal of pathology 135, 1105 (1989).
22.S. SHARMA, C. D. ZIPPE, L. PANDRANGI, D. NELSON, and A. AGARWAL, "Exclusion criteria enhance the specificity and positive predictive value of NMP22* and BTA stat," The Journal of urology 162, 53-57 (1999).
23.M.-P. Raitanen, P. Hellström, T. Marttila, H. Korhonen, M. Talja, J. Ervasti, and T. Tammela, "Effect of intravesical instillations on the human complement factor H related protein (BTA stat) test," European urology 40, 422-426 (2001).
24.L. S. Liou, "Urothelial cancer biomarkers for detection and surveillance," Urology 67, 25-33 (2006).
25.陳福慶, "奈米井陣列結構應用於膀胱癌指標之非標籤檢測," 國立成功大學理學院光電科學與工程學系碩士論文 (2020).
26.W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," nature 424, 824-830 (2003).
27.C. R. Yonzon, E. Jeoung, S. Zou, G. C. Schatz, M. Mrksich, and R. P. Van Duyne, "A comparative analysis of localized and propagating surface plasmon resonance sensors: the binding of concanavalin A to a monosaccharide functionalized self-assembled monolayer," Journal of the American Chemical Society 126, 12669-12676 (2004).
28.R. W. Wood, "XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 4, 396-402 (1902).
29.A. Hessel and A. Oliner, "A new theory of Wood’s anomalies on optical gratings," Applied optics 4, 1275-1297 (1965).
30.E. A. Coronado, E. R. Encina, and F. D. Stefani, "Optical properties of metallic nanoparticles: manipulating light, heat and forces at the nanoscale," Nanoscale 3, 4042-4059 (2011).
31.A. G. Brolo, "Plasmonics for future biosensors," Nature Photonics 6, 709-713 (2012).
32.W.-H. Chang, Z.-Y. Yang, T.-W. Chong, Y.-Y. Liu, H.-W. Pan, and C.-H. Lin, "Quantifying cell confluency by plasmonic nanodot arrays to achieve cultivating consistency," ACS sensors 4, 1816-1824 (2019).
33.M. Sobnack, W. Tan, N. Wanstall, T. Preist, and J. Sambles, "Stationary surface plasmons on a zero-order metal grating," Physical review letters 80, 5667 (1998).
34.A. L. Ghindilis, P. Atanasov, M. Wilkins, and E. Wilkins, "Immunosensors: electrochemical sensing and other engineering approaches," Biosensors and Bioelectronics 13, 113-131 (1998).
35.X. Chu, Z.-H. Lin, G.-L. Shen, and R.-Q. Yu, "Piezoelectric immunosensor for the detection of immunoglobulin M," Analyst 120, 2829-2832 (1995).
36.P. Pless, K. Futschik, and E. Schopf, "Rapid detection of Salmonellae by means of a new impedance-splitting method," Journal of food protection 57, 369-376 (1994).
37.G. Gauglitz, "Direct optical detection in bioanalysis: an update," Analytical and bioanalytical chemistry 398, 2363-2372 (2010).
38.W. C. Chan and S. Nie, "Quantum dot bioconjugates for ultrasensitive nonisotopic detection," Science 281, 2016-2018 (1998).
39.W. C. Chan, D. J. Maxwell, X. Gao, R. E. Bailey, M. Han, and S. Nie, "Luminescent quantum dots for multiplexed biological detection and imaging," Current opinion in biotechnology 13, 40-46 (2002).
40.R. C. Mucic, J. J. Storhoff, C. A. Mirkin, and R. L. Letsinger, "DNA-directed synthesis of binary nanoparticle network materials," Journal of the American Chemical Society 120, 12674-12675 (1998).
41.M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, "Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers," Journal of the American Chemical Society 123, 1471-1482 (2001).
42.M. Mrksich, J. R. Grunwell, and G. M. Whitesides, "Biospecific adsorption of carbonic anhydrase to self-assembled monolayers of alkanethiolates that present benzenesulfonamide groups on gold," Journal of the American Chemical Society 117, 12009-12010 (1995).
43.J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors," Sensors and actuators B: Chemical 54, 3-15 (1999).
44.H. Li, L. Ying, J. J. Green, S. Balasubramanian, and D. Klenerman, "Ultrasensitive coincidence fluorescence detection of single DNA molecules," Analytical chemistry 75, 1664-1670 (2003).
45.B. Liedberg, C. Nylander, and I. Lunström, "Surface plasmon resonance for gas detection and biosensing," Sensors and actuators 4, 299-304 (1983).
46.C. Nakamura, M. Hasegawa, N. Nakamura, and J. Miyake, "Rapid and specific detection of herbicides using a self-assembled photosynthetic reaction center from purple bacterium on an SPR chip," Biosensors and Bioelectronics 18, 599-603 (2003).
47.S. Sonezaki, S. Yagi, E. Ogawa, and A. Kondo, "Analysis of the interaction between monoclonal antibodies and human hemoglobin (native and cross-linked) using a surface plasmon resonance (SPR) biosensor," Journal of immunological methods 238, 99-106 (2000).
48.A. Severs, R. Schasfoort, and M. Salden, "An immunosensor for syphilis screening based on surface plasmon resonance," Biosensors and Bioelectronics 8, 185-189 (1993).
49.J. Wei, Y. Mu, D. Song, X. Fang, X. Liu, L. Bu, H. Zhang, G. Zhang, J. Ding, and W. Wang, "A novel sandwich immunosensing method for measuring cardiac troponin I in sera," Analytical biochemistry 321, 209-216 (2003).
50.N. Miura, K. Ogata, G. Sakai, T. Uda, and N. Yamazoe, "Detection of morphine in ppb range by using SPR (surface-plasmon-resonance) immunosensor," Chemistry letters 26, 713-714 (1997).
51.K. V. Gobi, H. Tanaka, Y. Shoyama, and N. Miura, "Continuous flow immunosensor for highly selective and real-time detection of sub-ppb levels of 2-hydroxybiphenyl by using surface plasmon resonance imaging," Biosensors and Bioelectronics 20, 350-357 (2004).
52.A. Homami and F. Ghazi, "MicroRNAs as biomarkers associated with bladder cancer," Medical journal of the Islamic Republic of Iran 30, 475 (2016).
53.C. Braicu, R. Cojocneanu-Petric, S. Chira, A. Truta, A. Floares, B. Petrut, P. Achimas-Cadariu, and I. Berindan-Neagoe, "Clinical and pathological implications of miRNA in bladder cancer," International journal of nanomedicine 10, 791 (2015).
54.B. Szymańska, E. Sawicka, A. Guzik, R. Zdrojowy, and A. Długosz, "The diagnostic value of nuclear matrix proteins in bladder cancer in the aspect of environmental risk from carcinogens," BioMed Research International 2017(2017).
55.S. F. Shariat, J. A. Karam, Y. Lotan, and P. I. Karakiewizc, "Critical evaluation of urinary markers for bladder cancer detection and monitoring," Reviews in urology 10, 120 (2008).
56.Y. Lotan, T. J. Bivalacqua, T. Downs, W. Huang, J. Jones, A. M. Kamat, B. Konety, P.-U. Malmström, J. McKiernan, and M. O’Donnell, "Blue light flexible cystoscopy with hexaminolevulinate in non-muscle-invasive bladder cancer: Review of the clinical evidence and consensus statement on optimal use in the USA—update 2018," Nature Reviews Urology 16, 377-386 (2019).
57.S. Daneshmand, A. K. Schuckman, B. H. Bochner, M. S. Cookson, T. M. Downs, L. G. Gomella, H. B. Grossman, A. M. Kamat, B. R. Konety, and C. T. Lee, "Hexaminolevulinate blue-light cystoscopy in non-muscle-invasive bladder cancer: review of the clinical evidence and consensus statement on appropriate use in the USA," Nature Reviews Urology 11, 589-596 (2014).
58.S. Daneshmand, S. Patel, Y. Lotan, K. Pohar, E. Trabulsi, M. Woods, T. Downs, W. Huang, J. Jones, and M. O’Donnell, "Efficacy and safety of blue light flexible cystoscopy with hexaminolevulinate in the surveillance of bladder cancer: a phase III, comparative, multicenter study," The Journal of urology 199, 1158-1165 (2018).
59.C. G. Blick, S. A. Nazir, S. Mallett, B. W. Turney, N. N. Onwu, I. S. Roberts, J. P. Crew, and N. C. Cowan, "Evaluation of diagnostic strategies for bladder cancer using computed tomography (CT) urography, flexible cystoscopy and voided urine cytology: results for 778 patients from a hospital haematuria clinic," BJU international 110, 84-94 (2012).
60.D. Burke, D. Shackley, and P. O'reilly, "The community‐based morbidity of flexible cystoscopy," BJU international 89, 347-349 (2002).
61.H.-S. Leong, J. Guo, R. G. Lindquist, and Q. H. Liu, "Surface plasmon resonance in nanostructured metal films under the Kretschmann configuration," Journal of applied physics 106, 124314 (2009).
62.K.-L. Lee, J.-B. Huang, J.-W. Chang, S.-H. Wu, and P.-K. Wei, "Ultrasensitive biosensors using enhanced Fano resonances in capped gold nanoslit arrays," Scientific reports 5, 1-9 (2015).
63.X. Guo, "Surface plasmon resonance based biosensor technique: a review," Journal of biophotonics 5, 483-501 (2012).
64.C.-H. Lin, H.-L. Chen, W.-C. Chao, C.-I. Hsieh, and W.-H. Chang, "Optical characterization of two-dimensional photonic crystals based on spectroscopic ellipsometry with rigorous coupled-wave analysis," Microelectronic engineering 83, 1798-1804 (2006).
65.C.-C. Liang, W.-H. Chang, and C.-H. Lin, "Nanotransfer printing of plasmonic nano-pleat arrays with ultra-reduced nanocavity width using perfluoropolyether molds," Journal of Materials Chemistry C 4, 4491-4504 (2016).
66.Y.-J. Chen, W.-H. Chang, and C.-H. Lin, "Selective Growth of Patterned Monolayer Gold Nanoparticles on SU-8 through Photoreduction for Plasmonic Applications," ACS Applied Nano Materials 4, 229-235 (2020).
67.N. G. Bastús, J. Comenge, and V. Puntes, "Kinetically Controlled Seeded Growth Synthesis of Citrate-Stabilized Gold Nanoparticles of up to 200 nm: Size Focusing versus Ostwald Ripening," Langmuir 27, 11098-11105 (2011).
68.A. B. Dahlin, J. O. Tegenfeldt, and F. Höök, "Improving the instrumental resolution of sensors based on localized surface plasmon resonance," Analytical chemistry 78, 4416-4423 (2006).
69.A. Shrivastava and V. B. Gupta, "Methods for the determination of limit of detection and limit of quantitation of the analytical methods," Chronicles of young scientists 2, 21-25 (2011).
電子全文 電子全文(網際網路公開日期:20260911)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊