|
Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural Machine Translation by Jointly Learning to Align and Translate. arXiv:1409.0473. Retrieved from: https://ui.adsabs.harvard.edu/abs/2014arXiv1409.0473B Baldini Soares, L., FitzGerald, N., Ling, J., & Kwiatkowski, T. (2019). Matching the Blanks: Distributional Similarity for Relation Learning. arXiv:1906.03158. Retrieved from: https://ui.adsabs.harvard.edu/abs/2019arXiv190603158B Brown, A. L., & Day, J. D. (1983). Macrorules for summarizing texts: the development of expertise. Journal of Verbal Learning and Verbal Behavior, 22(1), 1-14. doi: https://doi.org/10.1016/S0022-5371(83)80002-4 Cui, Y., Che, W., Liu, T., Qin, B., Wang, S., & Hu, G. (2020). Revisiting Pre-Trained Models for Chinese Natural Language Processing. arXiv:2004.13922. Retrieved from: https://ui.adsabs.harvard.edu/abs/2020arXiv200413922C Cui, Y., Che, W., Liu, T., Qin, B., Yang, Z., Wang, S., & Hu, G. (2019). Pre-Training with Whole Word Masking for Chinese BERT. arXiv:1906.08101. Retrieved from: https://ui.adsabs.harvard.edu/abs/2019arXiv190608101C Deng, L. (2014). A tutorial survey of architectures, algorithms, and applications for deep learning. APSIPA Transactions on Signal and Information Processing, 3, e2. doi: 10.1017/atsip.2013.9 Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv:1810.04805. Retrieved from: https://ui.adsabs.harvard.edu/abs/2018arXiv181004805D Dingler, T., Kern, D., Angerbauer, K., & Schmidt, A. (2017). Text Priming - Effects of Text Visualizations on Readers Prior to Reading, Cham. Hwang, G.-J., Chen, M.-R. A., Sung, H.-Y., & Lin, M.-H. (2019). Effects of integrating a concept mapping-based summarization strategy into flipped learning on students’ reading performances and perceptions in Chinese courses. British Journal of Educational Technology, 50(5), 2703-2719. doi: https://doi.org/10.1111/bjet.12708 Li, P.-H., Fu, T.-J., & Ma, W.-Y. (2019). Why Attention? Analyze BiLSTM Deficiency and Its Remedies in the Case of NER. arXiv:1908.11046. Retrieved from: https://ui.adsabs.harvard.edu/abs/2019arXiv190811046L Li, Y., & Yang, T. (2018). Word Embedding for Understanding Natural Language: A Survey. In S. Srinivasan (Ed.), Guide to Big Data Applications (pp. 83-104). Cham: Springer International Publishing. Mei-Mei Wu, 吳. (2004). 數位學習現在與未來發展. Mikolov, T., Karafiát, M., Burget, L., Černocký, J., & Khudanpur, S. (2010). Recurrent neural network based language model. Paper presented at the Eleventh annual conference of the international speech communication association. Nurrokhim, M. F., Riza, L. S., & Rasim. (2019). Generating mind map from an article using machine learning. Journal of Physics: Conference Series, 1280, 032023. doi: 10.1088/1742-6596/1280/3/032023 Otter, D. W., Medina, J. R., & Kalita, J. K. (2021). A Survey of the Usages of Deep Learning for Natural Language Processing. IEEE Transactions on Neural Networks and Learning Systems, 32(2), 604-624. doi: 10.1109/TNNLS.2020.2979670 Schuster, M., & Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing, 45(11), 2673-2681. doi: 10.1109/78.650093 Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., . . . Polosukhin, I. (2017). Attention Is All You Need. arXiv:1706.03762. Retrieved from: https://ui.adsabs.harvard.edu/abs/2017arXiv170603762V Yulianto, R., & Mariyah, S. (2017, 23-24 Oct. 2017). Building automatic mind map generator for natural disaster news in Bahasa Indonesia. Paper presented at the 2017 International Conference on Information Technology Systems and Innovation (ICITSI). 王美宜. (2010). 心智圖法教學運用於國中九年級原住民學生閱讀理解能力之研究. 國立臺灣師範大學. Available from Airiti AiritiLibrary database. (2010年) 王開府. (2008). 心智圖與概念模組在語文閱讀與寫作思考教學之運用. [Applying Mind Map and "Concept Model" to the Teaching of Reading and Writing in Thinking Curriculum of Language]. 國文學報(43), 263-296. doi: 10.6239/boc.200806_(43).07 宋曜廷, 黃嶸生, 蘇宜芬, & 張國恩. (2002). 具多重策略的閱讀理解輔助系統之設計與應用. 第四屆華人心理學家學術研討會暨第六屆華人心理與行為科際學術研討會. 林達森. (2003). 概念圖的理論基礎與運用實務. [On Concept Map: Its Theory and Practical Use in Education]. 花蓮師院學報(教育類)(17), 107-132. 柯華葳, 張郁雯, 詹益綾, & 丘嘉慧. (2017). PIRLS 2016 臺灣四年級學生閱. 讀素養國家報告. 桃園市:國立中央大學. 馬于婷, 黃淑賢, & 施如齡. (2018). 數位心智圖導入數位說故事對學童5C能力之學習成效分析. [Learning Effectiveness of Digital Mind Mapping Into Digital Storytelling for Elementary School Students' 5C Competencies]. 數位學習科技期刊, 10(2), 31-57. doi: 10.3966/2071260x2018041002002 教育部. (2014). 十二年國民基本教育課程綱要:總綱. 教育部. (2018). 十二年國民基本教育課程綱要國民中小學暨普通型高級中等學校:語文領域-國語文. 錢昭君, & 張世彗. (2010). 心智圖法寫作教學方案對國小學生創造力及寫作表現之影響. [The Effects of Mind Mapping Writing Teaching Program on Creativity and Writing Performance for Elementary Students]. 特殊教育學報(32), 79-99. doi: 10.6768/jse.201012.0079 蘇怡文, & 高振耀. (2012). 心像的魔法—心智圖與創造寫作. 中華民國特殊教育學會年刊(101年度), 87-102. doi: 10.6379/ajse.201212.0087
|