[1]K. Chang, RF and Microwave Wireless Systems, John Wiley, 2000.
[2]T. S. Rappaport, J. N. Murdock, and F. Gutierrez, "State of the Art in 60-GHz Integrated Circuits and Systems for Wireless Communications," Proceedings of the IEEE, vol. 99, no. 8, pp. 1390-1436, Aug. 2011.
[3]M. Marcus, and B. Pattan, “Millimeter wave propagation: spectrum management implications,” IEEE Microw. Mag., vol. 6, no. 2, pp. 54–62, 2005.
[4]C. Zhu and Z. Duan, "Design of 94-GHz Wideband Waveguide-Feed Patch Antenna and Array in eWLB Package," 2020 50th European Microwave Conference (EuMC), 2021, pp. 824-827.
[5]J. Svedin, L. Huss. A 94 GHz imaging radar system, FOI-R-1191-SE. Feb. 2004.
[6]S. S. M. Chung, C. Wu, Y. Chuang and H. Hsieh, "Preliminary design of 94 GHz E-band phase array antenna for future mobile communication," 2016 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC), 2016, pp. 899-902.
[7]A. Townley et al., "A 94-GHz 4TX–4RX Phased-Array FMCW Radar Transceiver With Antenna-in-Package," in IEEE Journal of Solid-State Circuits, vol. 52, no. 5, pp. 1245-1259, May 2017.
[8]A. Puglielli et al., "Design of Energy- and Cost-Efficient Massive MIMO Arrays," in Proceedings of the IEEE, vol. 104, no. 3, pp. 586-606, March 2016.
[9]Y. Chang, Y. Wang, C. Chen, Y. Wu and H. Wang, "A V-Band Power Amplifier With 23.7-dBm Output Power, 22.1% PAE, and 29.7-dB Gain in 65-nm CMOS Technology," in IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 11, pp. 4418-4426, Nov. 2019.
[10]Y. Lin and V. K. Nguyen, "94-GHz CMOS Power Amplifiers Using Miniature Dual Y-Shaped Combiner With RL Load," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 64, no. 6, pp. 1285-1298, June 2017.
[11]B. Sewiolo, G. Fischer and R. Weigel, "A 30 GHz Variable Gain Amplifier With High Output Voltage Swing for Ultra-Wideband Radar," in IEEE Microwave and Wireless Components Letters, vol. 19, no. 9, pp. 590-592, Sept. 2009.
[12]Y. Wang, B. Afshar, T. Cheng, V. Gaudet and A. M. Niknejad, "A 2.5mW inductorless wideband VGA with dual feedback DC-offset correction in 90nm CMOS technology," 2008 IEEE Radio Frequency Integrated Circuits Symposium, 2008.
[13]J. Cheng, F. Huang, Y. Gao, L. Wu and Y. Tian, "A 1GHz CMOS variable gain amplifier with 70dB linear-in-magnitude controlled gain range for UWB systems," 2009 15th Asia-Pacific Conference on Communications, 2009.
[14]S. C. Cripps, RF power amplifiers for wireless communications, Artech House, 2006.
[15]T. Suzuki, Y. Kawano, M. Sato, T. Hirose and K. Joshin, "60 and 77GHz Power Amplifiers in Standard 90nm CMOS," 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers, 2008.
[16]C. Y. Law and A. Pham, "A high-gain 60GHz power amplifier with 20dBm output power in 90nm CMOS," 2010 IEEE International Solid-State Circuits Conference - (ISSCC), 2010.
[17]T. Xi, S. Huang, S. Guo, P. Gui, D. Huang and S. Chakraborty, "High-Efficiency E-Band Power Amplifiers and Transmitter Using Gate Capacitance Linearization in a 65-nm CMOS Process," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 64, no. 3, pp. 234-238, March 2017.
[18]C. Wu, Y. Lin, Y. Hsiao, C. Chou, Y. Wu and H. Wang, "Design of a 60-GHz High-Output Power Stacked- FET Power Amplifier Using Transformer-Based Voltage-Type Power Combining in 65-nm CMOS," in IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 10, pp. 4595-4607, Oct. 2018.
[19]L. Chen, L. Zhang and Y. Wang, "A 26.4-dB Gain 15.82-dBm 77-GHz CMOS Power Amplifier With 15.9% PAE Using Transformer-Based Quadrature Coupler Network," in IEEE Microwave and Wireless Components Letters, vol. 30, no. 1, pp. 78-81, Jan. 2020.
[20]W. Hu et al., "A 0.18-μm CMOS RF Transceiver With Self-Detection and Calibration Functions for Bluetooth V2.1 + EDR Applications," in IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 5, pp. 1367-1374, May 2010.
[21]N. E. Farid, A. Nigam, S. A. E. A. Rahim, S. M. M. Hassan, R. Sanusi and A. I. A. Rahim, "A 40 GHz CMOS transceiver and radio front-end for the customer premise equipment unit of a radio-over-fiber system," 2013 IEEE International Conference on Ultra-Wideband (ICUWB), 2013, pp. 286-291.
[22]X. Meng, B. Chi, Y. Liu, T. Ma and Z. Wang, "A Fully Integrated 150-GHz Transceiver Front-End in 65-nm CMOS," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 66, no. 4, pp. 602-606, April 2019.
[23]周建彰,94-GHz CMOS毫米波單混頻器次諧波射頻收發機晶片及具自動化洩漏迴波消除功能之60-GHz非接觸式人體呼吸心跳訊號CMOS射頻感測晶片系統設計研究,國立成功大學電腦與通信工程研究所博士論文,民國一百零八年七月。[24]R. S. P. Tam “CMOS variable gain amplifier,” term paper, University of Toronto, 2002.
[25]歐雅文,毫米波CMOS 次諧波降頻混頻器與低相位變化之可變增益放大器射頻晶片之研製,國立成功大學電腦與通信工程研究所碩士論文,民國一百年。[26]B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, 2001.
[27]K. Fong, "Dual-band high-linearity variable-gain low-noise amplifiers for wireless applications," 1999 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC. First Edition (Cat. No.99CH36278), 1999, pp. 224-225.
[28]J. Xiao, I. Mehr and J. Silva-Martinez, "A High Dynamic Range CMOS Variable Gain Amplifier for Mobile DTV Tuner," in IEEE Journal of Solid-State Circuits, vol. 42, no. 2, pp. 292-301, Feb. 2007.
[29]C. Kuo, Z. Tsai, J. Tsai and H. Wang, "A 71–76 GHz CMOS variable gain amplifier using current steering technique," 2008 IEEE Radio Frequency Integrated Circuits Symposium, 2008, pp. 609-612.
[30]余俊翰,毫米波CMOS寬頻可變增益低雜訊放大器及使用前置失真線性器之94-GHz CMOS功率放大器,國立成功大學電腦與通信工程研究所碩士論文,民國一百零三年。[31]P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design, 2nd ed. New York, NY, USA: Oxford Univ. Press, 2002.
[32]C. Wu, C. Lee, W. Chen and S. Liu, "CMOS wideband amplifiers using multiple inductive-series peaking technique," in IEEE Journal of Solid-State Circuits, vol. 40, no. 2, pp. 548-552, Feb. 2005.
[33]劉家妤,應用於94-GHz CMOS射頻前端與整合GIPD天線之“混頻器優先”次諧波射頻接收機的毫米波混頻器之研製,國立成功大學電腦與通信工程研究所碩士論文,民國一百零九年。[34]B. Razavi, Design of Integrated Circuits for Optical Communications, 2nd ed. Hoboken, NJ, USA: Wiley, 2012.
[35]Y. Wang, B. Afshar, L. Ye, V. C. Gaudet and A. M. Niknejad, "Design of a Low Power, Inductorless Wideband Variable-Gain Amplifier for High-Speed Receiver Systems," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 59, no. 4, pp. 696-707, April 2012.
[36]F. Padovan, M. Tiebout, A. Neviani and A. Bevilacqua, "A 12 GHz 22 dB-Gain-Control SiGe Bipolar VGA With 2° Phase-Shift Variation," in IEEE Journal of Solid-State Circuits, vol. 51, no. 7, pp. 1525-1536, July 2016.
[37]T. Wu, C. Zhao, H. Liu, Y. Wu, Y. Yu and K. Kang, "A 20 ~ 43 GHz VGA with 21.5 dB Gain Tuning Range and Low Phase Variation for 5G Communications in 65-nm CMOS," 2019 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2019, pp. 71-74.
[38]J. R. Long, "Monolithic transformers for silicon RF IC design," in IEEE Journal of Solid-State Circuits, vol. 35, no. 9, pp. 1368-1382, Sept. 2000.
[39]I. Aoki, S. D. Kee, D. B. Rutledge and A. Hajimiri, "Distributed active transformer-a new power-combining and impedance-transformation technique," in IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 1, pp. 316-331, Jan. 2002.
[40]Q. J. Gu, Z. Xu and M. C. F. Chang, "Two-Way Current-Combining W-Band Power Amplifier in 65-nm CMOS," in IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 5, pp. 1365-1374, May 2012.
[41]林新皓,毫米波CMOS可調式混和變壓器射頻收發機雙工放大器與V-/W-band功率放大器之研製,國立成功大學電腦與通信工程研究所碩士論文,民國一百零八年。[42]朱嗣堯,整合GIPD天線之60-GHz四路結合功率放大器與V-及W-band之毫米波功率放大器研製,國立成功大學電腦與通信工程研究所碩士論文,民國一百零六年。[43]C. Chou, Y. Hsiao, Y. Wu, Y. Lin, C. Wu and H. Wang, "Design of a V-Band 20-dBm Wideband Power Amplifier Using Transformer-Based Radial Power Combining in 90-nm CMOS," in IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 12, pp. 4545-4560, Dec. 2016.
[44]Z. Tsai, Y. Hsiao, H. Liao and H. Wang, "A 90-GHz power amplifier with 18-dBm output power and 26 GHz 3-dB bandwidth in standard RF 65-nm CMOS technology," 2013 IEEE MTT-S International Microwave Symposium Digest (MTT), 2013, pp. 1-3.
[45]H. Jia, B. Chi, L. Kuang and Z. Wang, "A W-Band Power Amplifier Utilizing a Miniaturized Marchand Balun Combiner," in IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 2, pp. 719-725, Feb. 2015.
[46]H. S. Son, J. Y. Jang, D. M. Kang, H. J. Lee and C. S. Park, "A 109 GHz CMOS Power Amplifier With 15.2 dBm Psat and 20.3 dB Gain in 65-nm CMOS Technology," in IEEE Microwave and Wireless Components Letters, vol. 26, no. 7, pp. 510-512, July 2016.
[47]Y. Lin and V. K. Nguyen, "94-GHz CMOS Power Amplifiers Using Miniature Dual Y-Shaped Combiner With RL Load," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 64, no. 6, pp. 1285-1298, June 2017.
[48]Y. Lin and K. Lan, "Design and Analysis of a 94 GHz CMOS Power Amplifier Using Miniature Current Combiner," 2020 IEEE Radio and Wireless Symposium (RWS), 2020, pp. 5-8.
[49]S. Lin, J. Kuo and H. Wang, "A 60 GHz Sub-Harmonic Resistive FET Mixer Using 0.13 μm CMOS Technology," in IEEE Microwave and Wireless Components Letters, vol. 21, no. 10, pp. 562-564, Oct. 2011.
[50]H. Hsieh and L. Lu, "A 40-GHz Low-Noise Amplifier With a Positive-Feedback Network in 0.18-μm CMOS," in IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 8, pp. 1895-1902, Aug. 2009.
[51]D. A. Chan and M. Feng, "A Compact W-Band CMOS Power Amplifier With Gain Boosting and Short-Circuited Stub Matching for High Power and High Efficiency Operation," in IEEE Microwave and Wireless Components Letters, vol. 21, no. 2, pp. 98-100, Feb. 2011.
[52]H. Samavati, H. R. Rategh and T. H. Lee, "A 5-GHz CMOS wireless LAN receiver front end," in IEEE Journal of Solid-State Circuits, vol. 35, no. 5, pp. 765-772, May 2000.
[53]B. Huang, K. Lin and H. Wang, "Millimeter-Wave Low Power and Miniature CMOS Multicascode Low-Noise Amplifiers with Noise Reduction Topology," in IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 12, pp. 3049-3059, Dec. 2009.
[54]H. Kuo and H. Chuang, "A 60-GHz high-gain, low-power, 3.7-dB noise-figure low-noise amplifier in 90-nm CMOS," 2013 European Microwave Conference, 2013, pp. 1555-1558.
[55]P. Wu, T. Kijsanayotin and J. F. Buckwalter, "A 71–86-GHz Switchless Asymmetric Bidirectional Transceiver in a 90-nm SiGe BiCMOS," in IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 12, pp. 4262-4273, Dec. 2016.
[56]B. Sadhu et al., "7.2 A 28GHz 32-element phased-array transceiver IC with concurrent dual polarized beams and 1.4 degree beam-steering resolution for 5G communication," 2017 IEEE International Solid-State Circuits Conference (ISSCC), 2017, pp. 128-129.
[57]H. Su, R. Hu and C. Wu, "A 78 - 102 GHz Front-End Receiver in 90 nm CMOS Technology," in IEEE Microwave and Wireless Components Letters, vol. 21, no. 9, pp. 489-491, Sept. 2011.
[58]S. Shahramian, Y. Baeyens, N. Kaneda and Y. Chen, "A 70–100 GHz Direct-Conversion Transmitter and Receiver Phased Array Chipset Demonstrating 10 Gb/s Wireless Link," in IEEE Journal of Solid-State Circuits, vol. 48, no. 5, pp. 1113-1125, May 2013.
[59]F. Golcuk, T. Kanar and G. M. Rebeiz, "A 90 - 100-GHz 4 x 4 SiGe BiCMOS Polarimetric Transmit/Receive Phased Array With Simultaneous Receive-Beams Capabilities," in IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 8, pp. 3099-3114, Aug. 2013.
[60]A. Natarajan, A. Valdes-Garcia, B. Sadhu, S. K. Reynolds and B. D. Parker, "W-Band Dual-Polarization Phased-Array Transceiver Front-End in SiGe BiCMOS," in IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 6, pp. 1989-2002, June 2015.