跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/04 17:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王以勒
研究生(外文):WANG, YI-LE
論文名稱:在LTE-A D2D車載網路中以干擾範圍為基礎之資源分配機制
論文名稱(外文):Interference Zone Based LTE-A D2D Resource Allocation for Vehicular Communications
指導教授:楊峻權
指導教授(外文):YANG, CHUN-CHUAN
口試委員:張英超麥毅廷陳振庸
口試委員(外文):CHANG, ING-CHAUMAI, YI-TINGCHEN, JENG-YUENG
口試日期:2021-01-21
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:52
中文關鍵詞:長期演進技術車輛對車輛通訊資源分配車載隨意行動網路
外文關鍵詞:LTEV2VResource AllocationVANET
DOI:10.6837/ncnu202100028
相關次數:
  • 被引用被引用:0
  • 點閱點閱:129
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
無線通訊技術的發展至今,以及行動裝置的普及,人們對於行動網路的需求也開始增加,資料的傳輸量也大幅提升。長期演進技術(Long Term Evolution, LTE)是目前4G無線網路接取技術的標準,還有LTE-Advanced(LTE-A)是更加成熟的技術,在減輕核心網路負載之考量,Device to Device (D2D)通訊傳輸技術也日益的受到重視,D2D是一種可以不用透過基地台傳送,直接在無線裝置間進行資料傳輸的技術。另外也因為物聯網(Internet of Things, IOT)的普及,車載網路也逐漸受到重視與需求增加,透過交換車輛之間的行車相關資訊,可以有效避免事故發生,並且增加行車安全性。
LTE的系統能支援Vehicle-to-Vehicle(V2V),V2V透過共用核心網路中Cellular User Equipment (CUE)的頻譜資源來進行資料的傳輸,而使用相同資源的CUE及V2V對彼此造成傳輸資料上的干擾,因此如何有效地進行資源分配來降低干擾,就是本論文研究中的重點。本文將會探討在LTE-A之網路環境下,V2V共用核心網路中的CUE頻譜資源進行資料傳遞,透過對CUE及V2V做資源分配來提升系統總傳輸量,同時也設計了RI-Based Resource Allocation Algorithm來避免相鄰距離太近的兩組V2V共用同樣的頻譜資源來進行資料的傳輸。我們考慮在單一基地台訊號範圍的場景下,限制同時reuse相同頻譜資源的V2V數量,如果在CUE的頻譜資源被V2V reuse的情況下,會保證CUE與V2V的通訊擁有一定的品質。
With the development of wireless communication technology today, and the mobile devices become more popular. The requirement of mobility device has increased, the data of transmission are also significantly increased relatively. Long Term Evolution (LTE) is the standard 4G wireless network access technology, and LTE-Advanced(LTE-A) are also a mature technology. In order to decrease the overload of core network. Device to Device (D2D) communication technology has been gaining more and more attention in recent years. It can be defined as direct communication technology among devices without transmission over the Base Station. In other hand, the gradual popularization of the Internet of Things (IOT) also increasing the demand for Vehicular ad hoc networks (VANETs). Vehicles can exchange traffic data between each other, no need to pass through via Base Station. In case the vehicle can exchange data to each other immediately, that can avoid car accident and improve driving safety.
LTE system can support V2V, it can pass through reusing the CUE’s spectrum resource in core network, that will cause CUE and V2V using the same spectrum resources make interference to each other. So how to allocate CUE’s spectrum resource effectively, that’s a key point in our research. In this study, we discuss how to increase system capacity through V2V reusing CUE’s spectrum resource in LTE-A networks. And then, a RI-Based Resource Allocation Algorithm is proposed in this research to avoid two close V2V reuse the same resource of CUE. This study considers the scenario of a single base station with limiting the number of V2V reuse the same spectrum resource simultaneously. We will guarantee that CUE and V2V has a certain communication quality, when the V2V reuse spectrum resource of CUE.
致謝辭 i
摘要 ii
Abstract iii
目次 v
表目次 vii
圖目次 viii
第一章 簡介 1
1.1 前言 1
1.2 研究動機與目標 2
1.3 章節編排 3
第二章 技術標準與文獻介紹 4
2.1 長期演進技術介紹(LTE) 4
2.1.1 LTE網路架構 4
2.1.2 LTE-A網路架構 12
2.2 訊框架購(Frame Structure) 14
2.3 Device-to-Device通訊與相關研究文獻探討 16
第三章 干擾範圍為基礎之V2V資源分配設計 27
3.1 場景架構 27
3.2 問題定義 28
3.3 RI-Based Resource Allocation Algorithm 32
第四章 效能評估與模擬結果 36
4.1 效能評估環境 36
4.2 RI數值之決定 38
4.3 效能評估參數 41
4.3.1 系統總傳輸量(System Capacity) 41
4.3.2 分配率(V2V links Allocation Ratio) 41
4.3.3 分配到資源的V2V links平均干擾(Per Reused V2V links Average Interference) 41
4.3.4 分配到資源的V2V links平均傳輸量(Per Reused V2V links Average Capacity) 42
4.4 不同資源分配之比較 42
4.4.1 System Capacity之比較 45
4.4.2 V2V links Allocation Ratio之比較 46
4.4.3 Per Reused V2V links Average Interference之比較 47
4.4.4 Per Reused V2V links Average Capacity之比較 48
4.5 綜合討論 49
第五章 結論 50
參考文獻 51
表 3.2 1 符號表示 30
表 3.3 1 分配資源示意表 35
表 4.1 1 環境參數 37
表 4.4 1 MaxMin Resource Allocation Algorithm 43
表 4.4 2 Ransom Resource Allocation Algorithm 44
圖 2.1.1 1 3GPP LTE之網路架構層 5
圖 2.1.1 2 Evolved Packet System(EPS)網路元件 5
圖 2.1.1 3 LTE整體網路架構 7
圖 2.1.1 4 Control Plane Protocol Stack 9
圖 2.1.1 5 User Plane Protocol Stack 9
圖 2.1.1 6 EPC Bearer架構圖 11
圖 2.1.2 1 LTE-A網路架構圖 13
圖 2.2 1訊框架構示意圖 14
圖 2.3 1 D2D傳輸方式示意圖 16
圖 2.3 2 D2D Control plane 17
圖 2.3 3 D2D User plane 18
圖 2.3 4 D2D Interference Management 19
圖 2.3 5 Peer discovery示意圖 20
圖 2.3 6 Resource Sharing mode示意圖 21
圖 3.1 1 雙向車道場景圖 27
圖 3.3 1 優先權示意圖 33
圖 3.3 2 分配資源示意圖 34
圖 3.3 3 分配資源示意圖 35
圖 4.2 1 最佳RI值 38
圖 4.2 2 最佳RI值 39
圖 4.2 3 最佳RI值 40
圖 4.4 1 MaxMin Resource Allocation Algorithm 43
圖 4.4 2 Random Resource Allocation Algorithm 44
圖 4.4.1 1 25個CUE時不同資源分配的總傳輸量 45
圖 4.4.2 1 25個CUE時不同分組方式的分配率 46
圖 4.4.3 1 25個CUE時不同資源分配方式分配到資源的V2V平均干擾 47
圖 4.4.4 1 25個CUE時不同資源分配方式分配到資源的V2V平均傳輸量 48
[1]3GPP, “Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN),” TS 36.300, v10.3.0, March. 2011.
[2]S. Sesia, I. Toufik and M.P.J. Baker, LTE – The UMTS Long Term Evolution: From Theory to Practice, Wiley, Apr. 2009.
[3]3GPP, “Radio Access Network; UTRAN Overall Description,” Tech. spec. TS 25.401, v. 10.2.0, June. 2011.
[4]3GPP, “Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN),” TS 36.300, v.8.5.0, March. 2008.
[5]3GPP, “Radio Access Network; E-UTRA and E-UTRAN Overall Description,” Tech. spec. TS 36.300, v. 11.1.0, March. 2012.
[6]3GPP, “Physical Layer Procedures,” Tech. spec. TS 36.213 v. 10.0.1, Jan. 2011.
[7]3GPP, “Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) radio transmission and reception (Release 12),” Tech. spec. 3GPP TS 36.101 V12.7.0, Mar. 2015.
[8]Guozhi Li, Zhihua Yang, Shoufeng Chen, Yunhe Li, and Peng Yuan, “A traffic flow-based and dynamic grouping-enabled resource allocation algorithm for LTE-D2D vehicular networks,” IEEE/CIC International Conference on Communications in China (ICCC), 27-29 July 2016, pp. 1-6.
[9]Lin Su, Yusheng Ji, Ping Wang, and Fuqiang Liu, “Resource Allocation Using Particle Swarm Optimization for D2D Communication Underlay of Cellular Networks,” Wireless Communications and Networking Conference (WCNC), 7-10 April 2013, pp. 129-133.
[10]Safa Essassi, Ridha Hamila, Sofiane Cherif, Mohamed Siala, and Mazen Omar Hasna, “RB allocation based on genetic algorithm in cloud radio access networks,” International Wireless Communications and Mobile Computing Conference (IWCMC), 5-9 Sept. 2016, pp. 1002-1005.
[11]Sheng-Fa Tseng, “V2V Grouping for Resource Allocation in LTE-D2D Vehicular Networks,” National Chi Nan University, Research Group of Networking and Communication, July 2018.
[12]Quyuan Luo, Changle Li, Qiang Ye, Tom H. Luan, Lina Zhu, Xiaolei Han, “CFT: A Cluster-based File Transfer Scheme for highway VANETs,” 2017 IEEE International Conference on Communications (ICC), May 2017
[13]Peng Yue, Le Wu, Zongmin Cui, “Integrating LTE-D2D and VLC techniques to support V2V communication,” 2017 IEEE/CIC International Conference on Communications in China (ICCC), Oct 2017.
[14]H. Peng et al., "Resource allocation for D2D-enabled inter-vehicle communications in multiplatoons," 2017 IEEE International Conference on Communications (ICC), Paris, 2017.
[15]M. Y. Hassan, F. Hussain, M. S. Hossen, S. Choudhury and M. M. Alam, "A near optimal interference minimization resource allocation algorithm for D2D communication," 2017 IEEE International Conference on Communications (ICC), Paris, 2017, pp. 1-6.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊