跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.64) 您好!臺灣時間:2021/08/03 13:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:濮子嵐
研究生(外文):Pu, Tzu-Lan
論文名稱:苯磺胺薄膜修飾電極的製備及鳥嘌呤之電化學分析應用
論文名稱(外文):Preparation of Sulfanilamide Film-modified Electrodes for the Electrochemical Determination of Guanine
指導教授:鄭淑華鄭淑華引用關係
指導教授(外文):Cheng, Shu-Hua
口試委員:吳景雲李慧玲
口試委員(外文):Wu, Jing-YunLee, Hui-Ling
口試日期:2021-05-14
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:應用化學系
學門:自然科學學門
學類:化學學類
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:87
中文關鍵詞:網版印刷碳電極苯磺胺鳥嘌呤吸附差式脈衝伏安法
外文關鍵詞:screen-printed carbon electrode,sulfanilamideguanineadsorptiondifferential pulse voltammetry
相關次數:
  • 被引用被引用:0
  • 點閱點閱:12
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究先將網版印刷碳電極(Screen-printed carbon electrode, SPCE)進行過氧化處理(SPCERD),最後將苯磺胺(Sulfanilamide, SAA)以循環伏安法(Cyclic voltammetry, CV)方式修飾至電極表面,即成功製備苯磺胺薄膜修飾電極(SPCERD/dimer(SAA))。SPCERD/dimer(SAA)浸泡至鳥嘌呤(guanine)溶液中,使guanine吸附至電極上後,直接於原溶液中進行循環伏安法掃描。由實驗結果發現,未經處理的電極並沒有辦法將苯磺胺薄膜固定在電極上,而將過氧化處理後浸泡修飾上苯磺胺薄膜的SPCERD/dimer(SAA)im電極與電雙合修飾上處理方式相比, SPCERD/dimer(SAA)更可使guanine氧化訊號大幅增加,推測電極經過過氧化及電雙合修飾苯磺胺分子處理後,電極反應面積增加,且電極表面修飾材料與鳥嘌呤之間作用力增強,可使鳥嘌呤氧化電流訊號有增強的效果。二聚苯磺胺薄膜在SPCERD電極上能觀察到明顯的氧化還原峰。修飾電極的表面形貌、元素組成和親疏水性等特性以原子力顯微鏡(AFM),掃描電子顯微鏡(SEM),光電子能譜(XPS)和水接觸角等技術得到驗證。鳥嘌呤分析是以差式脈衝伏安法 (differential pulse voltammetry, DPV)進行定量,此方法的靈敏度為 51.02 A/M,線性範圍介於 0.5-10 M,偵測極限為1.18 nM (S/N=3)。
In this study, a screen-printed carbon electrode (SPCE) was overoxidized (SPCERD) and then immobilized with a thin electroactive sulfanilamide film (dimer(SAA)) by cyclic voltammetry (CV), and the dimer(SAA) film modified electrode was successfully prepared (SPCERD/dimer(SAA)). The characteristics of the dimer film-modified electrodes were well-characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM), photoelectron spectroscopy (XPS) and the water contact angle technique. Electrochemically induced dimerization mechanisms were discussed. The as-prepared modified electrode was used for the sensitive determination of guanine by immersing the sensor in solution for 15 minutes to adsorb guanine viaπ-π stack and hydrogen bonding interaction. The dimer(SAA) film cannot be modified on bare electrode. The guanine oxidation current responses were larger at SPCERD/dimer(SAA) as compared with SPCERD electrode immersed in SAA solution for 10 minutes. Under the optimal differential pulse voltammetry (DPV) conditions, the method sensitivity was 51.02 A/M. A linear response to guanine in the range of 0.5-10 M was obtained. The detection limit was 1.18 nM (S/N=3).
摘要 i
Abstract ii
目次 iii
表目次 v
圖目次 vi
第一章 簡介 1
1.1 嘌呤類藥物簡介 1
1.2 過氧化電極 8
1.3 化學修飾電極:二聚苯磺胺薄膜修飾電極 12
1.4 研究目的 24
第二章 材料與方法 25
2.1 藥品 25
2.2 儀器和設備 27
2.3 溶液配製 29
2.4 修飾電極的製備 31
2.5 電化學分析guanine實驗流程 32
第三章 結果與討論 33
3.1 SPCERD / dimer(SAA)的表面鑑定 33
3.2 SPCERD/dimer(SAA)的電化學性質 41
3.3 dimer(SAA)薄膜機制探討 46
3.4 利用SPCERD/dimer(SAA) 偵測guanine 54
3.5 定量分析 65
第四章 結論 79
第五章 未來展望 80
參考文獻 81


[1] R.J. Johnson, S. Titte, J.R. Cade, B.A. Rideout, W.J. Oliver, Uric acid, evolution and primitive cultures, Seminars in nephrology, Elsevier, 2005, pp. 3-8.
[2] H.S. Smith, D. Bracken, J.M. Smith, Gout: current insights and future perspectives, The Journal of Pain, 12 (2011) 1113-1129.
[3] K. Kaneko, Y. Aoyagi, T. Fukuuchi, K. Inazawa, N. Yamaoka, Total purine and purine base content of common foodstuffs for facilitating nutritional therapy for gout and hyperuricemia, Biological and Pharmaceutical Bulletin, (2014) b13-00967.
[4] E. Kedar, P.A. Simkin, A perspective on diet and gout, Advances in chronic kidney disease, 19 (2012) 392-397.
[5] K. Kaneko, F. Takayanagi, T. Fukuuchi, N. Yamaoka, M. Yasuda, K.-i. Mawatari, S. Fujimori, Determination of total purine and purine base content of 80 food products to aid nutritional therapy for gout and hyperuricemia, Nucleosides, Nucleotides & Nucleic Acids, (2020) 1-9.
[6] M.T. da Silva, M.d.F.H.S. Diniz, C.G. Coelho, P.G. Vidigal, R.W. Telles, S.M. Barreto, Intake of selected foods and beverages and serum uric acid levels in adults: ELSA-Brasil (2008–2010), Public Health Nutrition, 23 (2020) 506-514.
[7] B. Jakše, B. Jakše, M. Pajek, J. Pajek, Uric acid and plant-based nutrition, Nutrients, 11 (2019) 1736.
[8] H.K. Choi, K. Atkinson, E.W. Karlson, W. Willett, G. Curhan, Purine-rich foods, dairy and protein intake, and the risk of gout in men, New England Journal of Medicine, 350 (2004) 1093-1103.
[9] H.K. Choi, S. Liu, G. Curhan, Intake of purine‐rich foods, protein, and dairy products and relationship to serum levels of uric acid: the Third National Health and Nutrition Examination Survey, Arthritis & Rheumatism: Official Journal of the American College of Rheumatology, 52 (2005) 283-289.
[10] R.J. Johnson, G.L. Bakris, C. Borghi, M.B. Chonchol, D. Feldman, M.A. Lanaspa, T.R. Merriman, O.W. Moe, D.B. Mount, L.G.S. Lozada, Hyperuricemia, acute and chronic kidney disease, hypertension, and cardiovascular disease: report of a scientific workshop organized by the National Kidney Foundation, American Journal of Kidney Diseases, 71 (2018) 851-865.
[11] M.J. Bos, P.J. Koudstaal, A. Hofman, J.C. Witteman, M.M. Breteler, Uric acid is a risk factor for myocardial infarction and stroke: the Rotterdam study, Stroke, 37 (2006) 1503-1507.
[12] E. Krishnan, J.F. Baker, D.E. Furst, H.R. Schumacher, Gout and the risk of acute myocardial infarction, Arthritis & Rheumatism: Official Journal of the American College of Rheumatology, 54 (2006) 2688-2696.
[13] D. Khanna, J.D. Fitzgerald, P.P. Khanna, S. Bae, M.K. Singh, T. Neogi, M.H. Pillinger, J. Merill, S. Lee, S. Prakash, 2012 American College of Rheumatology guidelines for management of gout. Part 1: systematic nonpharmacologic and pharmacologic therapeutic approaches to hyperuricemia, Arthritis care & research, 64 (2012) 1431-1446.
[14] M.H. Pillinger, R.T. Keenan, Update on the management of hyperuricemia and gout, Bulletin of the NYU Hospital for joint diseases, 66 (2008) 231.
[15] D. Brulé, G. Sarwar, L. Savoiet, Purine content of selected Canadian food products, Journal of Food Composition and Analysis, 1 (1988) 130-138.
[16] T. Fukuuchi, M. Yasuda, K. Inazawa, T. Ota, N. Yamaoka, K.-i. Mawatari, K. Nakagomi, K. Kaneko, A simple HPLC method for determining the purine content of beer and beer-like alcoholic beverages, Analytical Sciences, 29 (2013) 511-517.
[17] J. Markelj, T. Zupančič, B. Pihlar, Optimization of high performance liquid chromatography method for simultaneous determination of some purine and pyrimidine bases, Acta Chimica Slovenica, 63 (2015) 8-17.
[18] N. Rukdee, P. Rojsanga, C.M. Phechkrajang, Development and validation of LC-MS/MS method for quantitative determination of adenosine, guanosine, xanthine and uric acid in widely consumed vegetables in Thailand, Natural product communications, 10 (2015) 1934578X1501000831.
[19] P. Šimek, A. Jegorov, F. Dusbábek, Determination of purine bases and nucleosides by conventional microbore high-performance liquid chromatography and gas chromatography with an ion-trap detector, Journal of Chromatography A, 679 (1994) 195-200.
[20] W. Stillwell, H.X. Xu, J.A. Adkins, J.S. Wishnok, S.R. Tannenbaum, Analysis of methylated and oxidized purines in urine by capillary gas chromatography-mass spectrometry, Chemical research in toxicology, 2 (1989) 94-99.
[21] J.-E. Edström, Separation and determination of purines and pyrimidine nucleotides in picogram amounts, Biochimica et biophysica acta, 22 (1956) 378-388.
[22] S. Pruneanu, A.R. Biris, F. Pogacean, M. Coroş, G.K. Kannarpady, F. Watanabe, A.S. Biris, The study of adenine and guanine electrochemical oxidation using electrodes modified with graphene-platinum nanoparticles composites, Electrochimica Acta, 139 (2014) 386-393.
[23] G.-B. Xu, J.-M. Cui, H. Liu, G.-G. Gao, Y.-F. Qiu, S.-M. Zhang, D.-M. Wu, Highly selective detection of cellular guanine and xanthine by polyoxometalate modified 3D graphene foam, Electrochimica Acta, 168 (2015) 32-40.
[24] P. Kanyong, S. Rawlinson, J. Davis, Fabrication and electrochemical characterization of polydopamine redox polymer modified screen-printed carbon electrode for the detection of guanine, Sensors and Actuators B: Chemical, 233 (2016) 528-534.
[25] S. Zhou, X. Guo, L. Meng, J. Cui, J. Li, X. Yuan, D. Wu, A miniature electrochemical detection system based on GOQDs/MWCNTs/SPCE* for determination the purine in cells, Analytical biochemistry, 577 (2019) 67-72.
[26] J. Kalaiyarasi, K. Pandian, S. Ramanathan, S.C. Gopinath, Graphitic carbon nitride/graphene nanoflakes hybrid system for electrochemical sensing of DNA bases in meat samples, Scientific reports, 10 (2020) 1-16.
[27] F. Hu, D.H. Karweik, T. Kuwana, Activation and deactivation of glassy carbon electrodes, Journal of electroanalytical chemistry and interfacial electrochemistry, 188 (1985) 59-72.
[28] J. Wang, M. Pedrero, H. Sakslund, O. Hammerich, J. Pingarron, Electrochemical activation of screen-printed carbon strips, Analyst, 121 (1996) 345-350.
[29] J. Mattusch, K.H. Hallmeier, K. Štulík, V. Pacáková, Pretreatment of glassy carbon electrodes by anodic galvanostatic pulses with a large amplitude, Electroanalysis, 1 (1989) 405-412.
[30] K. Štulík, Activation of solid electrodes, Electroanalysis, 4 (1992) 829-834.
[31] M.-H. Chiu, W.-C. Wei, J.-M. Zen, The role of oxygen functionalities at carbon electrode to the electrogenerated chemiluminescence of Ru (bpy) 32+, Electrochemistry communications, 13 (2011) 605-607.
[32] H.-H. Yang, M.-H. Chiu, K.-M. Chang, Y. Shih, Substituent effects on the electrocatalytic oxidation of phenols at preanodized screen-printed carbon electrodes, Journal of Electroanalytical Chemistry, 682 (2012) 172-174.
[33] G.A. Edwards, A.J. Bergren, M.D. Porter, Chemically modified electrodes, Handbook of Electrochemistry, Elsevier2007, pp. 295-327.
[34] R. Jain, S. Sharma, Glassy carbon electrode modified with multi-walled carbon nanotubes sensor for the quantification of antihistamine drug pheniramine in solubilized systems, Journal of pharmaceutical analysis, 2 (2012) 56-61.
[35] F. Cui, X. Zhang, Electrochemical sensor for epinephrine based on a glassy carbon electrode modified with graphene/gold nanocomposites, Journal of Electroanalytical Chemistry, 669 (2012) 35-41.
[36] S. Tajik, H. Beitollahi, P. Biparva, Methyldopa electrochemical sensor based on a glassy carbon electrode modified with Cu/TiO2 nanocomposite, Journal of the Serbian Chemical Society, 83 (2018) 863-874.
[37] N.S. Lopa, M.M. Rahman, H. Jang, S.C. Sutradhar, F. Ahmed, T. Ryu, W. Kim, A glassy carbon electrode modified with poly (2, 4-dinitrophenylhydrazine) for simultaneous detection of dihydroxybenzene isomers, Microchimica Acta, 185 (2018) 1-9.
[38] J. Li, H. Xie, L. Chen, A sensitive hydrazine electrochemical sensor based on electrodeposition of gold nanoparticles on choline film modified glassy carbon electrode, Sensors and Actuators B: Chemical, 153 (2011) 239-245.
[39] J. Schwarz, H. Knicker, G. Schaumann, S. Thiele-Bruhn, Enzymatic transformation and bonding of sulfonamide antibiotics to model humic substances, Journal of Chemistry, 2015 (2015).
[40] T.A. Msagati, J.C. Ngila, Voltammetric detection of sulfonamides at a poly (3-methylthiophene) electrode, Talanta, 58 (2002) 605-610.
[41] S. Caddick, J.D. Wilden, D.B. Judd, Direct synthesis of sulfonamides and activated sulfonate esters from sulfonic acids, Journal of the American Chemical Society, 126 (2004) 1024-1025.
[42] N. Anand, Sulfonamides: structure-activity relationships and mechanism of action, Inhibition of folate metabolism in chemotherapy, Springer1983, pp. 25-54.
[43] S.-C. Kim, K. Carlson, Temporal and spatial trends in the occurrence of human and veterinary antibiotics in aqueous and river sediment matrices, Environmental science & technology, 41 (2007) 50-57.
[44] G. Hansen, J. Olafsen, Bacterial interactions in early life stages of marine cold water fish, Microbial ecology, 38 (1999) 1-26.
[45] S.P. Ozkorucuklu, L. Ozcan, Y. Sahin, G. Alsancak, Electroanalytical determination of some sulfonamides on overoxidized polypyrrole electrodes, Australian Journal of Chemistry, 64 (2011) 965-972.
[46] B. He, W. Chen, Carboxyl multiwalled carbon nanotubes through ultrasonic dispersing in dimethylfomamide modified electrode as a sensitive amperometric sensor for detection of sulfonamide, Int. J. Electrochem. Sci, 10 (2015) 4335-4345.
[47] Y.-L. Su, S.-H. Cheng, A novel electroanalytical assay for sulfamethazine determination in food samples based on conducting polymer nanocomposite-modified electrodes, Talanta, 180 (2018) 81-89.
[48] A. El-Ghenymy, P.L. Cabot, F. Centellas, J.A. Garrido, R.M. Rodríguez, C. Arias, E. Brillas, Electrochemical incineration of the antimicrobial sulfamethazine at a boron-doped diamond anode, Electrochimica Acta, 90 (2013) 254-264.
[49] B.R. Ferraz, D. Profeti, L.P. Profeti, Sensitive detection of sulfanilamide by redox process electroanalysis of oxidation products formed in situ on glassy carbon electrode, Journal of Solid State Electrochemistry, 22 (2018) 339-346.
[50] C. Yao, H. Sun, H.-F. Fu, Z.-C. Tan, Sensitive simultaneous determination of nitrophenol isomers at poly (p-aminobenzene sulfonic acid) film modified graphite electrode, Electrochimica acta, 156 (2015) 163-170.
[51] R.M. Kotkar, A.K. Srivastava, Voltammetric determination of para-aminobenzoic acid using carbon paste electrode modified with macrocyclic compounds, Sensors and Actuators B: Chemical, 119 (2006) 524-530.
[52] K. Kaneko, T. Yamanobe, S. Fujimori, Determination of purine contents of alcoholic beverages using high performance liquid chromatography, Biomedical Chromatography, 23 (2009) 858-864.
[53] S. Rong, L. Zou, Y. Zhang, G. Zhang, X. Li, M. Li, F. Yang, C. Li, Y. He, H. Guan, Determination of purine contents in different parts of pork and beef by high performance liquid chromatography, Food chemistry, 170 (2015) 303-307.
[54] T. Yang, Q. Kong, Q. Li, X. Wang, L. Chen, K. Jiao, Highly sensitive and synergistic detection of guanine and adenine based on poly (xanthurenic acid)-reduced graphene oxide interface, ACS applied materials & interfaces, 6 (2014) 11032-11037.
[55] S. Baskar, C.-W. Liao, J.-L. Chang, J.-M. Zen, Electrochemical synthesis of electroactive poly (melamine) with mechanistic explanation and its applicability to functionalize carbon surface to prepare nanotube–nanoparticles hybrid, Electrochimica acta, 88 (2013) 1-5.
[56] J.-M. Lin, Y.-L. Su, W.-T. Chang, W.-Y. Su, S.-H. Cheng, Strong adsorption characteristics of a novel overoxidized poly (3, 4-ethylenedioxythiophene) film and application for dopamine sensing, Electrochimica Acta, 149 (2014) 65-75.
[57] B.R. Ferraz, T. Guimarães, D. Profeti, L.P. Profeti, Electrooxidation of sulfanilamide and its voltammetric determination in pharmaceutical formulation, human urine and serum on glassy carbon electrode, Journal of pharmaceutical analysis, 8 (2018) 55-59.
[58] E. Laviron, Adsorption, autoinhibition and autocatalysis in polarography and in linear potential sweep voltammetry, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 52 (1974) 355-393.
[59] M. Kahl, T.D. Golden, Electrochemical determination of phenolic acids at a Zn/Al layered double hydroxide film modified glassy carbon electrode, Electroanalysis, 26 (2014) 1664-1670.
[60] P. Gupta, R.N. Goyal, Polymelamine modified edge plane pyrolytic graphite sensor for the electrochemical assay of serotonin, Talanta, 120 (2014) 17-22.
[61] M. Echabaane, A. Rouis, I. Bonnamour, H.B. Ouada, Electrical and electrochemical properties of the MEH–PPV and MEH–PPV doped calix [4] arene derivative layers for the detection of Cu2+ and Na+ ions, Measurement, 46 (2013) 2411-2422.
[62] M.M. Ardakani, Z. Taleat, H. Beitollahi, M. Salavati-Niasari, B. Mirjalili, N. Taghavinia, Electrocatalytic oxidation and nanomolar determination of guanine at the surface of a molybdenum (VI) complex–TiO2 nanoparticle modified carbon paste electrode, Journal of Electroanalytical Chemistry, 624 (2008) 73-78.
[63] M.V.B. Zanoni, E.I. Rogers, C. Hardacre, R.G. Compton, The electrochemical reduction of the purines guanine and adenine at platinum electrodes in several room temperature ionic liquids, Analytica chimica acta, 659 (2010) 115-121.
[64] M.L.P. Arguelho, J.d.P.H. Alves, N.R. Stradiotto, V. Lacerda Júnior, J.M. Pires, A. Beatriz, Electrochemical and theoretical evaluation of the interaction between dna and amodiaquine: evidence of the guanine adduct formation, Química Nova, 33 (2010) 1291-1296.
[65] A.J. Bard, L.R. Faulkner, Fundamentals and applications, Electrochemical Methods, 2 (2001) 580-632.
[66] G. Mu, F. Luan, L. Xu, F. Hu, H. Liu, Y. Gao, Determination of purines in soybean milk by capillary electrophoresis in comparison with high performance liquid chromatography, Analytical Methods, 4 (2012) 3386-3391.
[67] 毛玉涛, 张洪, 王明力, HPLC 法测定豆浆中的嘌呤含量, 食品与发酵工业, 41 (2015) 207.
[68] Y. Kumar, S. Pradhan, S. Pramanik, R. Bandyopadhyay, D.K. Das, P. Pramanik, Efficient electrochemical detection of guanine, uric acid and their mixture by composite of nano-particles of lanthanides ortho-ferrite XFeO3 (X= La, Gd, Pr, Dy, Sm, Ce and Tb), Journal of Electroanalytical Chemistry, 830 (2018) 95-105.
[69] D. Wang, B. Huang, J. Liu, X. Guo, G. Abudukeyoumu, Y. Zhang, B.-C. Ye, Y. Li, A novel electrochemical sensor based on Cu@ Ni/MWCNTs nanocomposite for simultaneous determination of guanine and adenine, Biosensors and Bioelectronics, 102 (2018) 389-395.
[70] W. Sun, Y. Li, Y. Duan, K. Jiao, Direct electrocatalytic oxidation of adenine and guanine on carbon ionic liquid electrode and the simultaneous determination, Biosensors and Bioelectronics, 24 (2008) 988-993.
[71] Z. Wang, S. Xiao, Y. Chen, β-Cyclodextrin incorporated carbon nanotubes-modified electrodes for simultaneous determination of adenine and guanine, Journal of Electroanalytical Chemistry, 589 (2006) 237-242.
[72] Y.-S. Gao, J.-K. Xu, L.-M. Lu, L.-P. Wu, K.-X. Zhang, T. Nie, X.-F. Zhu, Y. Wu, Overoxidized polypyrrole/graphene nanocomposite with good electrochemical performance as novel electrode material for the detection of adenine and guanine, Biosensors and Bioelectronics, 62 (2014) 261-267.
[73] X. Niu, W. Yang, J. Ren, H. Guo, S. Long, J. Chen, J. Gao, Electrochemical behaviors and simultaneous determination of guanine and adenine based on graphene–ionic liquid–chitosan composite film modified glassy carbon electrode, Electrochimica Acta, 80 (2012) 346-353.
[74] S. He, P. He, X. Zhang, X. Zhang, K. Liu, L. Jia, F. Dong, Poly (glycine)/graphene oxide modified glassy carbon electrode: Preparation, characterization and simultaneous electrochemical determination of dopamine, uric acid, guanine and adenine, Analytica chimica acta, 1031 (2018) 75-82.
[75] Z. Guo, L. Li, X. Liu, G. Wu, X. Lu, X. Liu, 3, 4, 9, 10-Perylene tetracarboxylic acid-multiwalled carbon nanotubes nanocomposites modified electrode for the simultaneous detection of adenine and guanine, Journal of Electroanalytical Chemistry, 803 (2017) 150-156.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top