跳到主要內容

臺灣博碩士論文加值系統

(44.192.44.30) 您好!臺灣時間:2024/07/25 08:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李昆興
研究生(外文):Li, Kun-Sing
論文名稱:酪胺酸脢生物感測器在偵測細胞內Src激酶活性的應用
論文名稱(外文):The application of a tyrosinase biosensor to cellular Src kinase activity detection
指導教授:袁俊傑袁俊傑引用關係
指導教授(外文):Yuan, Chiun-Jye
口試委員:張家靖梁美智
口試委員(外文):Chang, Chia-ChingLiang, Mei-Chih
口試日期:2021-01-28
學位類別:碩士
校院名稱:國立交通大學
系所名稱:生物科技學系
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:英文
論文頁數:50
中文關鍵詞:酪胺酸脢生物感測器碳纖維紙激酶活性電化學靈敏細胞恆電流儀
外文關鍵詞:tyrosinaseSrckinaseactivitysensitivebiosensorelectrochemicalamperometrydopaquinonekinase assaycarbon fiber paperCFPsensor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:90
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
蛋白質激酶Src在生物體的細胞中扮演重要腳色,藉由磷酸化傳遞生物訊號達到調控細胞的生理功能,但當其出現異常活性則可能導致許多疾病,例如癌症、阿茲海默症及骨質失調。本篇延續之前實驗室發表的論文,對以酪胺酸酶為基底的蛋白質激酶活性感測平台進行改良及優化。以電漿及化學交聯法將生物酵素固定化在具有高表面積、高導電率的碳纖紙電極上。使用電化學法進行電性測量,分析激酶的催化活性。之後從利用市售Src重組蛋白進行激酶活性測試後求得檢量線的結果來看,此生物感測器可以廣泛適用於Src激酶濃度範圍為1.3~165.2U/mL,並且有不錯的偵測極限 7.434 U/mL。最後成功以生物感測器定量MCF-7細胞裂解物中Src激酶的比活性,約為1.625 U/mg,並與傳統的西方點墨法進行比較。經過努力,我們做出穩定,高度靈敏且可有效定量激酶活性的生物感測器,期望未來可作為一種應用於藥物開發,細胞中訊息傳遞路徑以及臨床上的研究方法。
Protein tyrosine kinase Src plays a vital role in living organisms by phosphorylation to transduce signal and regulate cellular processes. However, the abnormal activity of Src kinase may lead to many diseases, such as cancers, Alzheimer’s disease and disorder of bone remodeling. In this study, there were the improvement and optimization on a tyrosinase-based platform to measure the activity of protein kinase developed in our previous work. The enzymatic tyrosinase was immobilized on high surface area and high conductive carbon fiber paper electrode by plasma treatment and chemical cross-linking method. The electrochemical method was used to measure and analyze the catalytic activity of kinases. Then, the calibration curve was conducted by detecting the kinase activity of the commercial recombinant Src protein. The result showed that this biosensor could be widely applied to the range of 1.3 ~ 165.2 U/mL Src kinase, with a pretty good detection limit of 7.434 U/mL. Finally, it is the specific activity that 1.625 U/mL of cellular Src kinase was successfully quantified in the cell lysates of MCF-7. Besides, the biosensor was also with the comparison to traditional method of western blot. With efforts, a stable, highly sensitive and effective quantification biosensor for protein kinase activity was developed, and had the potential applications to drug development, clinical research and the basic research of Src signal pathway.
Content
中文摘要 .I
Abstract II
AcknowledgmentIII
Content.V
Content of figures and tables VII
1. INTRODUCTION1
1.1 Protein kinase .1
1.2 Proto-oncogene protein tyrosine kinase Src .2
1.3 Measurement of kinase activity3
1.4 Electrochemical amperometry4
1.5 The strategy of Src protein kinase biosensor4
2. MATERIALS AND METHODS .6
2.1 Materials.6
2.2 Apparatus7
2.3 Enzyme-based electrode preparation7
2.3.1 Preparation of CFP electrode.7
2.3.2 Immobilization of tyrosinase on CFP electrode 7
2.4 Electrochemical amperometry analysis8
2.5 Src kinase activity assay.8
2.6 Construction of His6-tagged Src gene expression vector .9
2.7 Cell culture, transfection and EGFR activation by NSC228155 11
2.8 Preparation of lysate from cell culture for WB and IP .11
2.9 Preparation of lysate from cell culture for biosensor test.11
2.10 Western blotting12
3. RESULTS AND DISCUSSION .13
3.1 The preparation of tyrosinase-immobilized electrode for biosensor13
3.1.1 One-step Cross-linking process.13
3.1.2 Sandwich type Cross-linking process14
3.1.3 Two-step Cross-linking process.14
3.2 Optimization of tyrosinase-chitosan-glutaraldehyde-based biosensor.15
3.2.1 Effect of chitosan.15
3.2.2 Effect of tyrosinase 16
3.2.3 Effect of the concentration of glutaraldehyde .16
3.3 Electrochemical performance of the protein tyrosine kinase biosensor.17
3.3.1 The effect of potential for electrochemical analysis17
3.3.2 The LOD for p60-c-Src substrate 1 peptide 17
3.3.3 Standard curve of commercial Src kinase activity 18
3.4 Measurements of cellular Src kinase protein19
3.4.1 Western blotting for Src kinase19
3.4.2 Biosensor for Src kinase 20
4. CONCLUSION .22
5. REFERENCE23
Reference
1. Stancik I.A., Šestak M.S., Ji B., Axelson-Fisk M., Franjevic D., Jers C., Domazet-Lošo T., Mijakovic I., Serine/threonine protein kinases from bacteria, archaea and eukarya share a common evolutionary origin deeply rooted in the tree of life, J. Mol. Biol., 2018, 430(1):27-32.
2. Manning G., Plowman G.D., Hunter T., Sudarsanam S., Evolution of protein kinase signaling from yeast to man, Trends Biochem. Sci., 2002, 27(10):514-520.
3. Kyriakis J.M., In the beginning, there was protein phosphorylation, J Biol Chem, 2014, 289(14):9460-9462.
4. Johnson G.L., Vaillancourt R.R., Sequential protein kinase reactions controlling cell growth and differentiation, Curr. Opin. Cell Biol., 1994, 6(2):230-238.
5. Zhao X., Guan J.-L., Focal adhesion kinase and its signaling pathways in cell migration and angiogenesis, Adv. Drug Del. Rev., 2011, 63(8):610-615.
6. Kahn B.B., Alquier T., Carling D., Hardie D.G., AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism, Cell Metab., 2005, 1(1):15-25.
7. Lee J.C., Laydon J.T., McDonnell P.C., Gallagher T.F., Kumar S., Green D., McNulty D., Blumenthal M.J., Keys J.R., Land vatter S.W. et al, A protein kinase involved in the regulation of inflammatory cytokine biosynthesis, Nature, 1994, 372(6508):739-746.
8. Kyriakis J.M., Avruch J., Protein kinase cascades activated by stress and inflammatory cytokines, Bioessays, 1996, 18(7):567-577.
9. Shchemelinin I., `efc L.k., Nf as E., Protein kinases, their function and implication in cancer and other diseases, Folia Biol., 2006, 52 3:81-100.
10. Swanson K.D., Taylor L.K., Haung L., Burlingame A.L., Landreth G.E., Transcription factor phosphorylation by pp90(rsk2). Identification of Fos kinase and NGFI-B kinase I as pp90(rsk2), J Biol Chem, 1999, 274(6):3385-3395.
11. Xing J., Ginty D.D., Greenberg M.E., Coupling of the Ras-MAPK pathway to gene activation by RSK2, a growth factor-regulated CREB kinase, Science, 1996, 273(5277):959.
12. Behrens A., Sibilia M., Wagner E.F., Amino-terminal phosphorylation of c-Jun regulates stress-induced apoptosis and cellular proliferation, Nat. Genet., 1999, 21(3):326-329.
13. Lonze B.E., Ginty D.D., Function and regulation of CREB family transcription factors in the nervous system, Neuron, 2002, 35(4):605-623.
14. Herrera D.G., Robertson H.A., Activation of c-fos in the brain, Prog. Neurobiol., 1996, 50(2):83-107.
15. Franklin R.A., McCubrey J.A., Kinases: positive and negative regulators of apoptosis, Leukemia, 2000, 14(12):2019-2034.
16. Cross T.G., Scheel-Toellner D., Henriquez N.V., Deacon E., Salmon M., Lord J.M., Serine/threonine protein kinases and apoptosis, Exp. Cell Res., 2000, 256(1):34-41.
17. Brunet A., Bonni A., Zigmond M.J., Lin M.Z., Juo P., Hu L.S., Anderson M.J., Arden K.C., Blenis J., Greenberg M.E., Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor, Cell, 1999, 96(6):857-868.
18. Castedo M., Ferri K.F., Kroemer G., Mammalian target of rapamycin (mTOR): pro- and anti-apoptotic, Cell Death Differ., 2002, 9(2):99-100.
19. Villena J., Kitazawa H., Van Wees S.C.M., Pieterse C.M.J., Takahashi H., Receptors and signaling pathways for recognition of bacteria in livestock and crops: prospects for beneficial microbes in healthy growth strategies, Front Immunol, 2018, 9:2223-2223.
20. Wiersinga W.J., Kager L.M., Hovius J.W.R., van der Windt G.J.W., de Vos A.F., Meijers J.C.M., Roelofs J.J., Dondorp A., Levi M., Day N.P. et al, Urokinase receptor is necessary for bacterial defense against pneumonia-derived septic melioidosis by facilitating phagocytosis, J. Immunol., 2010, 184(6):3079.
21. Tang D., Wang G., Zhou J.-M., Receptor kinases in plant-pathogen interactions: more than pattern recognition, Plant Cell, 2017, 29(4):618.
22. Schulz P., Herde M., Romeis T., Calcium-dependent protein kinases: hubs in plant stress signaling and development, Plant Physiol., 2013, 163(2):523.
23. Manning G., Whyte D.B., Martinez R., Hunter T., Sudarsanam S., The protein kinase complements of the human genome, Science, 2002, 298(5600):1912.
24. Marques Pereira P., Schneider A., Pannetier S., Heron D., Hanauer A., Coffin–Lowry syndrome, Europ. J. Hum. Genet., 2010, 18(6):627-633.
25. Kaliman P., Llagostera E., Myotonic dystrophy protein kinase (DMPK) and its role in the pathogenesis of myotonic dystrophy 1, Cell. Signal., 2008, 20(11):1935-1941.
26. Pierson C.R., Agrawal P.B., Blasko J., Beggs A.H., Myofiber size correlates with MTM1 mutation type and outcome in X-linked myotubular myopathy, Neuromuscul. Disord., 2007, 17(7):562-568.
27. Cohen P., The role of protein phosphorylation in human health and disease.  , Eur. J. Biochem., 2001, 268(19):5001-5010.
28. Arnsten A.F.T., Ameliorating prefrontal cortical dysfunction in mental illness: inhibition of phosphotidyl inositol-protein kinase C signaling, Psychopharmacology, 2008, 202(1):445.
29. Beaulieu J.-M., A role for Akt and glycogen synthase kinase-3 as integrators of dopamine and serotonin neurotransmission in mental health, J Psychiatry Neurosci, 2012, 37(1):7-16.
30. Mehdi S.J., Rosas-Hernandez H., Cuevas E., Lantz S.M., Barger S.W., Sarkar S., Paule M.G., Ali S.F., Imam S.Z., Protein kinases and Parkinson's disease, Int J Mol Sci, 2016, 17(9):1585.
31. Simatou A., Simatos G., Goulielmaki M., Spandidos D.A., Baliou S., Zoumpourlis V., Historical retrospective of the Src oncogene and new perspectives, Mol Clin Oncol, 2020, 13(4):21.
32. Hanafusa T., Hanafusa H., Miyamoto T., Recovery of a new virus from apparently normal chick cells by infection with avian tumor viruses, PNAS., 1970, 67(4):1797.
33. Mitra S.K., Schlaepfer D.D., Integrin-regulated FAK–Src signaling in normal and cancer cells, Curr. Opin. Cell Biol., 2006, 18(5):516-523.
34. Pelicci G., Lanfrancone L., Grignani F., McGlade J., Cavallo F., Forni G., Nicoletti I., Grignani F., Pawson T., Pelicci P.G., A novel transforming protein (SHC) with an SH2 domain is implicated in mitogenic signal transduction, Cell, 1992, 70(1):93-104.
35. Lin C.-H., Yu M.-C., Chiang C.-C., Bien M.-Y., Chien M.-H., Chen B.-C., Thrombin-induced NF-κB activation and IL-8/CXCL8 release is mediated by c-Src-dependent Shc, Raf-1, and ERK pathways in lung epithelial cells, Cell. Signal., 2013, 25(5):1166-1175.
36. Johnson D., Agochiya M., Samejima K., Earnshaw W., Frame M., Wyke J., Regulation of both apoptosis and cell survival by the v-Src oncoprotein, Cell Death Differ., 2000, 7(8):685-696.
37. Jha V., Macchia M., Tuccinardi T., Poli G., Three-dimensional interactions analysis of the anticancer target c-Src kinase with its inhibitors, Cancers, 2020, 12:2327.
38. Roskoski R., Src protein-tyrosine kinase structure, mechanism, and small molecule inhibitors, Pharmacol. Res., 2015, 94:9-25.
39. Aleshin A., Finn R.S., Src: a century of science brought to the clinic, Neoplasia, 2010, 12(8):599-607.
40. Sen B., Johnson F.M., Regulation of Src family kinases in human cancers, J. Signal Transduct., 2011, 2011:14.
41. Heusschen R., Muller J., Binsfeld M., Marty C., Plougonven E., Dubois S., Mahli N., Moermans K., Carmeliet G., Léonard A. et al, Src kinase inhibition with saracatinib limits the development of osteolytic bone disease in multiple myeloma, Oncotarget, 2016, 7(21):30712-30729.
42. Nygaard H.B., van Dyck C.H., Strittmatter S.M., Fyn kinase inhibition as a novel therapy for Alzheimer’s disease, Alzheimer's Res. Ther., 2014, 6(1):8.
43. Mota S.I., Ferreira I.L., Valero J., Ferreiro E., Carvalho A.L., Oliveira C.R., Rego A.C., Impaired Src signaling and post-synaptic actin polymerization in Alzheimer's disease mice hippocampus — linking NMDA receptors and the reelin pathway, Exp. Neurol., 2014, 261:698-709.
44. Verbeek B.S., Vroom T.M., Adriaansen-Slot S.S., Ottenhoff-Kalff A.E., Geertzema J.G.N., Hennipman A., Rijksen G., C-Src protein expression is increased in human breast cancer. An immunohistochemical and biochemical analysis, J. Pathol., 1996, 180(4):383-388.
45. Elsberger B., Translational evidence on the role of Src kinase and activated Src kinase in invasive breast cancer, Crit. Rev. Oncol./Hematol., 2014, 89(3):343-351.
46. Cartwright C.A., Kamps M.P., Meisler A.I., Pipas J.M., Eckhart W., Pp60c-src activation in human colon carcinoma, J Clin Invest, 1989, 83(6):2025-2033.
47. Talamonti M.S., Roh M.S., Curley S.A., Gallick G.E., Increase in activity and level of pp60c-src in progressive stages of human colorectal cancer, J Clin Invest, 1993, 91(1):53-60.
48. Vlaeminck-Guillem V., Gillet G., Rimokh R., Src: marker or actor in prostate cancer aggressiveness, Front. Oncol., 2014, 4(222).
49. Zheng R., Qin X., Li W., Kang J., Effects of Src on proliferation and invasion of lung cancer cells, Chinese journal of lung cancer, 2011, 14:311-316.
50. Rupniewska E., Roy R., Mauri F., Liu X., Kaliszczak M., Bellezza G., Cagini L., Barbareschi M., Ferrero S., Tommasi A. et al, Targeting autophagy sensitises lung cancer cells to Src family kinase inhibitors, Oncotarget, 2018, 9.
51. Lutz M.P., Eßer I.B.S., Flossmann-Kast B.B.M., Vogelmann R., Lührs H., Friess H., Büchler M.W., Adler G., Overexpression and activation of the tyrosine kinase Src in human pancreatic carcinoma, Biochem. Biophys. Res. Commun., 1998, 243(2):503-508.
52. Huang Y.-W., Chen C., Xu M.-M., Li J.-D., Xiao J., Zhu X.-F., Expression of c-Src and phospho-Src in epithelial ovarian carcinoma, Mol. Cell. Biochem., 2013, 376(1):73-79.
53. Zhang X.H.F., Wang Q., Gerald W., Hudis C.A., Norton L., Smid M., Foekens J.A., Massagué J., Latent bone metastasis in breast cancer tied to Src-dependent survival signals, Cancer Cell, 2009, 16(1):67-78.
54. Hu C., Deng Z., Zhang Y., Yan L., Cai L., Lei J., Xie Y., The prognostic significance of Src and p-Src expression in patients with osteosarcoma, Med Sci Monit, 2015, 21:638-645.
55. Lee J.H., Pyon J.-K., Kim D.W., Lee S.H., Nam H.S., Kim C.H., Kang S.G., Lee Y.J., Park M.Y., Jeong D.J. et al, Elevated c-Src and c-Yes expression in malignant skin cancers, J. Exp. Clin. Cancer Res., 2010, 29(1):116.
56. Allgayer H., Boyd D.D., Heiss M.M., Abdalla E.K., Curley S.A., Gallick G.E., Activation of Src kinase in primary colorectal carcinoma, Cancer, 2002, 94(2):344-351.
57. Roseweir A.K., Qayyum T., Lim Z., Hammond R., MacDonald A.I., Fraser S., Oades G.M., Aitchison M., Jones R.J., Edwards J., Nuclear expression of Lyn, a Src family kinase member, is associated with poor prognosis in renal cancer patients, BMC Cancer, 2016, 16(1):229.
58. Park J.-E., Li L., Park J., Knecht R., Strebhardt K., Yuspa S.H., Lee K.S., Direct quantification of polo-like kinase 1 activity in cells and tissues using a highly sensitive and specific ELISA assay, PNAS., 2009, 106(6):1725.
59. Chen C.-A., Yeh R.-H., Lawrence D.S., Design and synthesis of a fluorescent reporter of protein kinase activity, J. Am. Chem. Soc., 2002, 124(15):3840-3841.
60. Shults M.D., Janes K.A., Lauffenburger D.A., Imperiali B., A multiplexed homogeneous fluorescence-based assay for protein kinase activity in cell lysates, Nat. Methods, 2005, 2(4):277-284.
61. Tang S., Hu Y., Shen Q., Fang H., Li W., Nie Z., Yao S., Cyclic-AMP-dependent protein kinase (PKA) activity assay based on FRET between cationic conjugated polymer and chromophore-labeled peptide, Analyst, 2014, 139(18):4710-4716.
62. Ullman E.F., Kirakossian H., Switchenko A.C., Ishkanian J., Ericson M., Wartchow C.A., Pirio M., Pease J., Irvin B.R., Singh S. et al, Luminescent oxygen channeling assay (LOCI): sensitive, broadly applicable homogeneous immunoassay method, Clin. Chem., 1996, 42(9):1518-1526.
63. Guo X.-X., Wu H.-T., Zhuang S.-H., Chen Z.-H., Liang R.-L., Chen Y., Wu Y.-S., Liu T.-C., Detection of Janus-activated kinase-1 and its interacting proteins by the method of luminescent oxygen channeling, RSC Advances, 2017, 7(16):9639-9644.
64. Xu X., Zhou J., Liu X., Nie Z., Qing M., Guo M., Yao S., Aptameric peptide for one-step detection of protein kinase, Anal. Chem., 2012, 84(11):4746-4753.
65. Wei H., Chen C., Han B., Wang E., Enzyme colorimetric assay using unmodified silver nanoparticles, Anal. Chem., 2008, 80(18):7051-7055.
66. Yan Z., Deng P., Liu Y., Recent advances in protein kinase activity analysis based on nanomaterials, Int J Mol Sci, 2019, 20(6):1440.
67. Urisman A., Levin R.S., Gordan J.D., Webber J.T., Hernandez H., Ishihama Y., Shokat K.M., Burlingame A.L., An optimized chromatographic strategy for multiplexing in parallel reaction monitoring mass spectrometry: insights from quantitation of activated kinases, Molecular & Cellular Proteomics 2017, 16(2):265.
68. Freeman R., Gill R., Willner I., Following a protein kinase activity using a field-effect transistor device, ChemComm., 2007(33):3450-3452.
69. Kerman K., Vestergaard M.d., Tamiya E., Label-free electrical sensing of small-molecule inhibition on tyrosine phosphorylation, Anal. Chem., 2007, 79(17):6881-6885.
70. Hu Q., Kong J., Han D., Zhang Y., Bao Y., Zhang X., Niu L., Electrochemically controlled raft polymerization for highly sensitive electrochemical biosensing of protein kinase activity, Anal. Chem., 2019, 91(3):1936-1943.
71. Tan D., Li F., Zhou B., Electrochemical assay methods for protein kinase activity, Int. J. Electrochem. Sci., 2019, 14(6):5707.
72. Kerman K., Song H., Duncan J.S., Litchfield D.W., Kraatz H.-B., Peptide biosensors for the electrochemical measurement of protein kinase activity, Anal. Chem., 2008, 80(24):9395-9401.
73. Li J., Kuang D., Feng Y., Zhang F., Xu Z., Liu M., Wang D., Electrochemical tyrosine sensor based on a glassy carbon electrode modified with a nanohybrid made from graphene oxide and multiwalled carbon nanotubes, Microchimica Acta, 2013, 180(1):49-58.
74. Hu Q., Wang Q., Jiang C., Zhang J., Kong J., Zhang X., Electrochemically mediated polymerization for highly sensitive detection of protein kinase activity, Biosens. Bioelectron., 2018, 110:52-57.
75. Afsharan H., Navaeipour F., Khalilzadeh B., Tajalli H., Mollabashi M., Ahar M.J., Rashidi M.-R., Highly sensitive electrochemiluminescence detection of p53 protein using functionalized Ru–silica nanoporous@gold nanocomposite, Biosens. Bioelectron., 2016, 80:146-153.
76. Liu J., He X., Wang K., He D., Wang Y., Mao Y., Shi H., Wen L., A highly sensitive electrochemiluminescence assay for protein kinase based on double-quenching of graphene quantum dots by G-quadruplex–hemin and gold nanoparticles, Biosens. Bioelectron., 2015, 70:54-60.
77. Liang R.-P., Qiu W.-B., Zhao H.-F., Xiang C.-Y., Qiu J.-D., Electrochemiluminescence resonance energy transfer between graphene quantum dots and graphene oxide for sensitive protein kinase activity and inhibitor sensing, Anal. Chim. Acta, 2016, 904:58-64.
78. Li P.-P., Cao Y., Mao C.-J., Jin B.-K., Zhu J.-J., TiO2/g-C3N4/CdS nanocomposite-based photoelectrochemical biosensor for ultrasensitive evaluation of t4 polynucleotide kinase activity, Anal. Chem., 2019, 91(2):1563-1570.
79. Yin H., Sun B., Dong L., Li B., Zhou Y., Ai S., A signal “on” photoelectrochemical biosensor for assay of protein kinase activity and its inhibitor based on graphite-like carbon nitride, Phos-tag and alkaline phosphatase, Biosens. Bioelectron., 2015, 64:462-468.
80. Pumera M., Sánchez S., Ichinose I., Tang J., Electrochemical nanobiosensors, Sensors Actuators B: Chem., 2007, 123(2):1195-1205.
81. Wang C.-L., Wei L.-Y., Yuan C.-J., Hwang K.C., Reusable amperometric biosensor for measuring protein tyrosine kinase activity, Anal. Chem., 2012, 84(2):971-977.
82. Bachmann B., Lüke W., Hunsmann G., Improvement of PCR amplified DNA sequencing with the aid of detergents, Nucleic acids research, 1990, 18(5):1309-1309.
83. Jensen M.A., Fukushima M., Davis R.W., DMSO and betaine greatly improve amplification of GC-rich constructs in de novo synthesis, PLoS ONE, 2010, 5.
84. Huang Y.D., Qiu J.H., Liu L.X., Zhang Z.Q., The uniform treatment of carbon fiber surface in three-directional orthogonal fabric by oxygen-plasma, J. Mater. Sci., 2003, 38(4):759-766.
85. Robb D.A., Gutteridge S., Polypeptide composition of two fungal tyrosinases, Phytochemistry, 1981, 20(7):1481-1485.
86. Rahman S., Gobikrishnan S., Indrawan N., Park S.-H., Park J.-H., Min K., Yoo Y., Park D.-H., A study on the electrochemical synthesis of L-DOPA using oxidoreductase enzymes: optimization of an electrochemical process, J. Microbiol. Biotechnol., 2012, 22:1446-1451.
87. Min K., Park D.-H., Yoo Y.J., Electroenzymatic synthesis of L-DOPA, J. Biotechnol., 2010, 146(1):40-44.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊