跳到主要內容

臺灣博碩士論文加值系統

(44.200.168.16) 您好!臺灣時間:2023/04/02 01:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:顏世淳
研究生(外文):Yen, Shih-Chun
論文名稱:液晶與高分子前驅物複合材料生物感測器
論文名稱(外文):Liquid Crystal‒Prepolymer Composite Biosensor
指導教授:李偉李偉引用關係李孟娟李孟娟引用關係
指導教授(外文):Lee, WeiLee, Mon-Juan
口試委員:李偉李孟娟鄭協昌李佳榮
口試委員(外文):Lee, WeiLee, Mon-JuanJeng, Shie-ChangLee, Chia-Rong
口試日期:2020-08-10
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電系統研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:109
語文別:中文
論文頁數:73
中文關鍵詞:高分子‒液晶複合材料生物感測器牛血清蛋白
外文關鍵詞:LC‒prepolymer compositebiosensorbovine serum albumin
相關次數:
  • 被引用被引用:0
  • 點閱點閱:217
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一種基於高分子與液晶複合材料的生物感測手段,可應用於牛血清蛋白之檢測。經過紫外光曝照高分子聚合後,實驗結果顯示吾人得以達到更佳之偵測極限及偵測靈敏度,背後的機制是摻雜低濃度光固化高分子預聚物於液晶中表現出特殊的預傾角調控特性及折射率不匹配導致的光散射。本研究採用高分子/液晶複合系統做為牛血清蛋白偵測手段,搭配介電常數的量測進行牛血清蛋白濃度定量分析,再利用介電常數值換算出液晶等效傾角後,該等效傾角與牛血清蛋白的一對一關係擬合出線性函數來做為定量分析的依據,此偵測手段所達最佳偵測極限為10-10 g/ml。
We propose to LC–prepolymer (E7–NOA65) as the sensing element for protein detection. After irradiating ultraviolet light to perform the photopolymerization process, our results indicate that the limit of detection can be promoted due to the enhancement of the optical signal, derived from the controlling of the LC’s pretilt angle and light scattering. In this study, the polymer–liquid crystal composite system was used as the detection method of bovine serum protein, combined with the measurement of dielectric constant for quantitative analysis of the concentration of bovine serum protein, and then the dielectric constant value was used to calculate the equivalent tilt angle of the liquid crystal. The one-to-one relationship between tilt angle and the concentration of bovine serum protein is fitted to a linear function as a basis for quantitative analysis. The best detection limit reached by this method is 10-10 g/ml.
摘   要 i
ABSTRACT ii
目   錄 iii
表 目 錄 v
圖 目 錄 vi
第1章 緒論 1
1.1 前言 1
1.2 液晶簡介 4
1.3 研究動機 7
1.4 論文架構 8
第2章 基礎背景 10
2.1 液晶生物感測沿革 10
2.2 高分子預聚物與液晶之複合材料 20
2.3 以光固化預聚物調控液晶預傾角 23
2.4 介電頻譜 25
2.4.1 物質的極化與介電 25
2.4.2 液晶的介電常數 27
第3章 樣品配製與實驗裝置 29
3.1實驗材料 29
3.2 實驗儀器 35
3.3 樣品製備 36
3.3.1 基板清洗與浸鍍配向膜 36
3.3.2 牛血清蛋白(BSA)附著之液晶合製作 37
3.4 實驗量測 40
3.4.1 牛血清蛋白之光學紋理觀測 40
3.4.2 介電實部數值之測量 41
3.4.3 圖像分析軟體ImageJ 43
第4章 實驗結果與討論 44
4.1 無電極液晶盒之光學紋理觀測 45
4.1.1 液晶與高分子前驅物生物檢測平台之材料參數選擇 45
4.1.2 蛋白質之檢測結果 48
4.2 ITO液晶盒之介電頻譜量測 57
4.2.1 光學玻璃與ITO玻璃對 UV光之吸收差異 57
4.2.2以介電實部訊號定量蛋白質濃度 59
第5章 結論與未來展望 66
參考文獻 69
[1] R. Monošík, M. Streďanský, and E. Šturdík, “Biosensors - classification, characterization and new trends,” Acta Chimica Slovaca, 5(1), 109–120 (2012).
[2] B. Nagel, H. Dellweg, and L. M. Gierasch, “Glossary for chemists of terms used,” Pure and Applied Chemistry 64(1), 143–168 (1992).
[3] 謝惠珠,《新竹生醫電子報第108期-技術延伸-電化學技術在生醫領域的新應用》,財團法人工業技術研究院生醫與醫材研究所,2017年。
[4] F. Reinitzer, “Beiträge zur kenntnis des cholesterins,” Monatshefte für Chemie 9, 421–441 (1888).
[5] O. Lehmann, “Über fliessende krystalle,” Zeitschrift für physikalische Chemie 4, 462-472 (1889).
[6] G. A. DiLisi and J. J. DeLuca, “Classifications of liquid crystals,” in An introduction to liquid crystals (Morgan and Claypool, San Rafael, 2019), Chap. 3 pp. 120.
[7] J. W. Doane, N. A. Vaz, B. Wu, and S. Žumer, “Field controlled light scattering from nematic microdroplets,” Applied Physics Letters 48(4), 269–271 (1986).
[8] 段飛帆,《以高分子穩定型液晶膜做為癌症生物標誌CA125之無標記免疫檢測手段》,碩士論文,交通大學影像與生醫光電研究所,民108年。
[9] C.-R. Hsu, B.-L. Chen, and C.-Y. Huang, “Controlling liquid crystal pretilt angle with photocurable prepolymer and vertically aligned substrate,” Optics Express 24(2), 14631471 (2016).
[10] C.-J. Hsu, Z.-Y. Cui, C. Chiu, F. Hsiao, and C.-Y. Huang, “Self-assembled polymer gravel array in prepolymer-doped nematic liquid crystals,” Optical Materials Express 7(12), 43744385 (2017).
[11] H. Kang, J.-H. Lee, D.-G. Kim, and D. Kang, “Control of pretilt angle in liquid crystal and photocurable monomer system,” Molecular Crystals and Liquid Crystals 607(1), 94–103 (2015).

[12] V. K. Gupta, J. J. Skaife, T. B. Dubrovsky, and N. L. Abbott, “Optical amplification of ligand-receptor binding using liquid crystals,” Science 279(5359), 2077–2080 (1998).
[13] C. Luan, H. Luan, and D. Luo, “Application and technique of liquid crystal-based biosensors,” Micromachines 11(2), 176–195 (2020).
[14] N. A. Lockwood, J. J. de Pablo, and N. L. Abbott, “Influence of surfactant tail branching and organization on the orientation of liquid crystals at aqueous-liquid crystal interfaces,” Langmuir 21(15), 6805–6814 (2005).
[15] Y. Wang, Q. Hu, T. Tian, Y. Gao, and L. Yu, “A liquid crystal-based sensor for the simple and sensitive detection of cellulase and cysteine,” Colloids and Surfaces B: Biointerfaces 147, 100–105 (2016).
[16] P. Popov, L. W. Honaker, E. E. Kooijman, E. K. Mann, and A. I. Jákli, “A liquid crystal biosensor for specific detection of antigens,” Sensing and Bio-Sensing Research 8, 31–35 (2016).
[17] C.-H. Chen, Y.-C. Lin, H.-H. Chang, and A. S.-Y. Lee, “Ligand-doped liquid crystal sensor system for detecting mercuric ion in aqueous aolutions,” Analytical Chemistry 87(8), 4546–4551 (2015).
[18] J. M. Brake, M. K. Daschner, Y. Y. Luk, and N. L. Abbott, “Biomolecular interactions at phospholipid-decorated surfaces of liquid crystals,” Science 302(5653), 2094–2097 (2003).
[19] J. M. Brake, M. K. Daschner, and N. L. Abbott, “Formation and characterization of phospholipid monolayers spontaneously assembled at interfaces between aqueous phases and thermotropic liquid crystals,” Langmuir 21(6), 2218–2228 (2005).
[20] J. M. Brake and N. L. Abbott, “An experimental system for imaging the reversible adsorption of amphiphiles at aqueous-liquid crystal interfaces,” Langmuir 18(16), 6101–6109 (2002).
[21] J. M. Brake, A. D. Mezera, and N. L. Abbott, “Active control of the anchoring of 4'-pentyl-4-cyanobiphenyl (5CB) at an aqueous-liquid crystal interface by using a redox-active ferrocenyl surfactant,” Langmuir 19(21), 8629–8637 (2003).

[22] J. M. Brake, A. D. Mezera, and N. L. Abbott, “Effect of surfactant structure on the orientation of liquid crystals at aqueous-liquid crystal interfaces,” Langmuir 19(16), 6436–6442 (2003).
[23] D. Zhao, Y. Peng, L. Xu, W. Zhou, Q. Wang, and L. Guo, “Liquid-Crystal Biosensor Based on Nickel-Nanosphere-Induced Homeotropic Alignment for the Amplified Detection of Thrombin,” ACS Applied Materials and Interfaces 7(42), 23418–23422 (2015).
[24] S. Yang, Y. Liu, H. Tan, C. Wu, Z. Wu, G. Shen, and R. Yu, “Gold nanoparticle based signal enhancement liquid crystal biosensors for DNA hybridization assays,” Chemical Communications 48(23), 2861–62863 (2012).
[25] C. Wu, S. Yang, Z. Wu, G. Shen, and R. Yu, “Split aptamer-based liquid crystal biosensor for ATP assay,” Acta Chimica Sinica, 71(3), 367–370 (2013).
[26] D.-K. Yang, L.-C. Chien, and Y. K. Fung, “Polymer-stabilized cholesteric textures: materials and applicaiotns,” in Liquid Crystals in Complex Geometries, edited by G. P. Crawford and S. Zumer (Taylor and Francis, London, 1996), Chap. 4, p. 106.
[27] Y. Zhang, C. Wang, W. Zhao, M. Li, X. Wang, X. Yang, X. Hu, D. Yuan, W. Yang, Y. Zhang, P. Lv, J. He, and G. Zhou, “Polymer stabilized liquid crystal smart window with flexible substrates based on low-temperature
treatment of polyamide acid technology,” Polymers 11, 1869–1879 (2019).
[28] H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nature Materials 1, 64–68 (2002).
[29] J. Yuan, G. Tan, D. Xu, F. Peng, A. Lorenz, and S.-T. Wu, “Low-voltage and fast-response polymer-stabilized hyper-twisted nematic liquid crystal,” Optical Materials Express 5, 1339–1347 (2015).
[30] H. Mehrzad, E. Mohajerani, K. Neyts, and M. Mohammadimasoudi, “Polymer dispersed liquid crystalmediated active plasmonic mode with microsecond response time,” Optics Letters 44, 1088–1091 (2019).
[31] P.-C. Wu, H.-L. Chen, N.V. Rudakova, I. V. Timofeev, V. Y. Zyryanov, and W. Lee, “Electro-optical and dielectric properties of polymer-stabilized blue phase liquid crystal impregnated with a fluorine-containing compound,”
Journal of Molecular Liquids 267, 138–143 (2018).
[32] Z.-Y. Kuang, Y. Deng, J. Hu, L. Tao, P. Wang, J. Chen, and H.-L. Xie, “Responsive smart windows enabled by the azobenzene copolymer brush with photothermal effect,” ACS Applied Materials and Interfaces 11, 37026–37034 (2019).
[33] F. P. Nicoletta, G. Chidichimo, D. Cupelli, G. De Filpo, M. De Benedittis, B. Gabriele, G. Salerno, and A. Fazio, “Electrochromic polymer-dispersed liquid-crystal film: a new bifunctional device,” Advanced Functional Materials 15, 995–999 (2005).
[34] B. Pinto-Iguanero, A. Olivares-Pérez, and I. Fuentes-Tapia, “Holographic material film composed by Norland Noa 65® adhesive,” Optical Materials 3, 225–232 (2002).
[35] 許家榮,《雙溶劑混合矽烷薄膜於液晶可調預傾角之研究研究成果報告》,行政院國家科學委員會專題研究計畫,民98年。
[36] H.-H. Liu, and W. Lee, “Ionic properties of liquid crystals dispersed with carbon nanotubes and montmorillonite nanoplatelets,” Applied Physics Letters 97(17), 173501-1–173501-3 (2010).
[37] B.-R. Jian, C.-Y. Tang, and W. Lee, “Temperature-dependent electrical properties of dilute suspensions of carbon nanotubes in nematic liquid crystals,” Carbon 49(3), 910–914 (2011).
[38] P.-C. Wu, L. N. Lisetski, and W. Lee, “Suppressed ionic effect and low-frequency texture transitions in a cholesteric liquid crystal doped with graphene nanoplatelets,” Optics Express 23(9), 11195–11204 (2015).
[39] A. Sawada, H. Sato, A. Manabe, and S. Naemura, “Study of internal electric field of liquid-crystal cell effected by space-charge polarization,” Japanese Journal of Applied Physics 39(6A), 3496–3591 (2000).
[40] C.-H. Wen, High Birefringence and Low Viscosity Liquid Crystals, PhD dissertation, University of Central Florida, Florida, USA (2006).
[41] K.-H. Yang, “Measurements of empty cell gap for liquid‐crystal displays using interferometric methods,” Journal of Applied Physics 64(9), 4780–4781 (1988).
[42] C.-H. Chen and K.-L. Yang, “Liquid crystal-based immunoassays for detecting hepatitis B antibody,” Analytical Biochemistry 421(1), 321–323 (2012).
[43] 邱士晉,《不同比率混合之雙溶劑於混合矽烷溶液中對可調預傾角液晶盒》,碩士論文,國立成功大學光電科學與工程研究所,民97年。
[44] 巫崇印,《層化高分子/液晶複合薄膜之直流電場效應》,碩士論文,中原大學物理研究所,民97年。
[45] M.-J. Lee, H.-W. Su, S.-H. Sun, and W. Lee, “Ultrahigh sensitivity in liquid-crystal-based immunodetection by surface modification of the alignment layer,” Proceedings of SPIE 9182, Liquid Crystals XVIII (2014).
[46] H.-W. Su, Y.-H. Lee, M.-J. Lee, Y.-C. Hsu, and W. Lee, “Label-free immunodetection of the cancer biomarker CA125 using high-n liquid crystals,” Journal of Biomed Optics 19(7), 077006-1−07006-6 (2014).
[47] C. P. Jisha, K.-C. Hsu, Y. Lin, J.-H. Lin, K.-P. Chuang, C.-Y. Tai, and R.-K. Lee, “Phase separation and pattern instability of laser−induced polymerization in liquid−crystal−monomer mixtures,” Optical Materials Express 1(8) 1494−1501 (2011).
[48] A. Emoto, E. Uchida and T. Fukuda, “Optical and physical applications of photocontrollable materials: azobenzene-containing and liquid crystalline polymers,” Polymers, 4(1), 150–186 (2012).
[49] 林靖旻,《雙頻液晶之介電分析應用於無標記蛋白質的量化檢測》,碩士論文,碩士論文,民107年。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊