跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/13 21:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李庭毓
研究生(外文):Lee, Ting-Yu
論文名稱:金屬嵌入式之混合膠體量子點發光二極體封裝結構
論文名稱(外文):A Metal Embedded Package Structure for Hybrid Colloidal Quantum Dot LEDs
指導教授:林建中林建中引用關係
指導教授(外文):Lin, Chien-Chung
口試委員:許進恭張守進
口試委員(外文):Sheu, Jinn-KongChang, Shoou-Jinn
口試日期:2020-08-21
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電系統研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:109
語文別:英文
論文頁數:45
中文關鍵詞:膠體量子點發光二極體
外文關鍵詞:Colloidal Quantum DotsLight Emitting Diode
相關次數:
  • 被引用被引用:0
  • 點閱點閱:221
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為了解光和熱效應對於量子點之影響,本論文中將由硫化鋅包覆硒化鎘的量子點甲苯溶液混合二甲基矽氧烷,以兩種不同的封裝方式分別與底部含有四種不同發光強度的藍光發光二極體的標準5070封裝體結合。
量子點受到藍色波段的光激發出比較長波段的光,用積分球系統量測樣品的光譜圖隨著長時間供應電流來點亮發光二極體藍激發量子點的改變,並分析所有樣品光譜的半高寬、光強度大小以及峰值的位移量來確認是否會達到比較高的量子效率與可靠度。
因為量子點也會受到熱的影響所以我們還會使用熱影像儀拍攝持續點亮時整個樣品表面的溫度,來確保使用不同的封裝方式會提高樣品散熱以避免量子點快速老化,同時我們也會使用Comsol這個模擬軟體來模擬量子點在樣品內部的溫度分佈,將模擬與實際情形結合來對整個結果進行分析。
In this thesis, to understand the light and thermal impact on the quantum dots, the CdSe/ZnS quantum dot in toluene solution was mixed with polydimethylsiloxane and then filled on the LED. We designed two package structures to encapsulate quantum dots with two different quantities. Four different devices were made in 5070 lead frames respectively.
The quantum dots were excited by the blue light and they can release a longer wavelength of photons. The intensity degradation, emission peak shift, and the spectral linewidth broadening or narrowing are all monitored through continuous pumping of the LED chips co-packaged in the lead frame. The difference in thermal environment inside the package can greatly affect the outcomes of these parameters and the results are analyzed by linear extrapolation of the data points and also matched by the software simulation for the temperature distribution within the packages. Once these results are obtained, we can further optimize the thermal loading in the future to extend the lifetime of the quantum dots in this hybrid LED design.
摘要 i
Abstract ii
致謝 iii
List of Figures vi
Chapter 1. Introduction 1
1.1 Light Emitting Diode (LED) 1
1.2 Quantum Dots 2
1.3 Colloidal Quantum Dots 3
1.4 Motivation 4
Chapter 2. Theoretical Background and Literature Review 5
2.1 The Operation Principle of Light Emitting Diode (LED) 5
2.2 Literature Review of Quantum Dots 7
2.3 Emission Principle of Colloidal Quantum Dots 8
2.4 Type of Core-shell quantum dots 10
Chapter 3. Experiment and Measurement Setup 11
3.1 Experiment Materials 11
3.1.1 Colloidal quantum dots 11
3.1.2 Fabrication of Colloidal QD Light-Emitter Diode 12
3.2 Optical Measurement Instruments 14
3.2.1 Integrating Sphere 14
3.2.2 Thermographic Camera 15
3.2.3 Illuminometer 16
3.2.4 Absorption and Photoluminescence (PL) System 17
Chapter 4. The Hybrid Colloidal Quantum Dots LED Property and Reliability 18
4.1 The first Package type for hybrid CQD LED 18
4.2 A Metal Embedded Package Structure for hybrid CQD LED 19
4.3 Prepare of pumping source 21
4.4 The performance of two structures 22
4.5 Photoluminescence Quantum Yield 27
4.6 Peak and FWHM of hybrid CQD LED 32
Chapter 5. Thermal Effect Calculation 34
5.1 Measured thermal result of hybrid CQD LED 34
5.2 Thermal simulation of hybrid CQD LED 37
Chapter 6. Conclusion and Future Work 43
Reference 44
[1] Nakamura, Shuji, Takashi Mukai, and Masayuki Senoh. "Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes." Applied Physics Letters 64.13 (1994): 1687-1689.
[2] Schubert, E. Fred, Thomas Gessmann, and Jong Kyu Kim. "Light emitting diodes." Kirk‐Othmer Encyclopedia of Chemical Technology (2000).
[3] Bera, Debasis, et al. "Quantum dots and their multimodal applications: a review." Materials 3.4 (2010): 2260-2345.
[4] Kwak, Jeonghun, et al. "Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure." Nano letters 12.5 (2012): 2362-2366.
[5] Otto, Tobias, et al. "Colloidal nanocrystals embedded in macrocrystals: Robustness, photostability, and color purity." Nano letters 12.10 (2012): 5348-5354.
[6] Cohen, Marvin L., and T. K. Bergstresser. "Band structures and pseudopotential form factors for fourteen semiconductors of the diamond and zinc-blende structures." Physical Review 141.2 (1966): 789.
[7] Chuan, Feng Zhe, ed. III-nitride semiconductor materials. World Scientific, 2006.
[8] Schubert, E. Fred, Thomas Gessmann, and Jong Kyu Kim. "Light emitting diodes." Kirk‐Othmer Encyclopedia of Chemical Technology (2000).
[9] Murray, CBea, David J. Norris, and Moungi G. Bawendi. "Synthesis and characterization of nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor.
[10] Mews, Alf, et al. "Preparation, characterization, and photophysics of the quantum dot quantum well system cadmium sulfide/mercury sulfide/cadmium sulfide." The Journal of Physical Chemistry 98.3 (1994): 934-941.
[11] Density of State Available from: https://warwick.ac.uk/fac/sci/physics/current/postgraduate/regs/mpagswarwick/ex5/bandstructure/
[12] Protesescu, Loredana, et al. "Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut." Nano letters 15.6 (2015): 3692-3696.
[13] Wang, Xiaoyong, et al. "Surface-related emission in highly luminescent CdSe quantum dots." Nano Letters 3.8 (2003): 1103-1106.
[14] 謝孟婷, and 韋光華. CdSe 量子點與 CdSe/ZnS, CdSe/ZnSe 核殼結構量子點之合成與性質分析. Diss. 2004.
[15] Wu, Ming-Hsien, Kateri E. Paul, and George M. Whitesides. "Patterning flood illumination with microlens arrays." Applied optics 41.13 (2002): 2575-2585.
[16] Youn, H., S. U. B. B. A. S. H. Baral, and J. H. Fendler. "Dihexadecyl phosphate, vesicle-stabilized and in situ generated mixed CdS and ZnS semiconductor particles. Preparation and utilization for photosensitized charge separation and hydrogen generation." J. Phys. Chem.;(United States) 92.22 (1988).
[17] Dabbousi, Bashir O., et al. "(CdSe) ZnS core− shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites." The Journal of Physical Chemistry B 101.46 (1997): 9463-9475.
[18] Suzuki, Kengo, et al. "Reevaluation of absolute luminescence quantum yields of standard solutions using a spectrometer with an integrating sphere and a back-thinned CCD detector." Physical Chemistry Chemical Physics 11.42 (2009): 9850-9860.
[19] Multiphysics, C. O. M. S. O. L. "Introduction to COMSOL multiphysics®." COMSOL Multiphysics, Burlington, MA, accessed Feb 9 (1998): 2018.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top