跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/24 04:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:傅冠霖
研究生(外文):Fu, Guan-Lin
論文名稱:以原子層沉積法成長二氧化鈦-二氧化錫複合薄膜在室溫下之光活化酒氣感測特性
論文名稱(外文):Light-Activated room-temperature alcohol gas sensing properties of TiO2-SnO2 composite films deposited by Atomic Layer Deposition
指導教授:楊斯博鄭錫恩
指導教授(外文):Yang, Zu-PoCheng, Hsyi-En
口試委員:楊斯博鄭錫恩余英松張俊傑
口試委員(外文):Yang, Zu-PoCheng, Hsyi-EnYu, Ing-SongChang, Chun-Chieh
口試日期:2020-12-11
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電系統研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:109
語文別:中文
論文頁數:114
中文關鍵詞:二氧化鈦二氧化錫室溫酒氣感測光活化感測器
外文關鍵詞:Titanium dioxideTin dioxideRoom temperature alcohol gas sensorLight-activated sensor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:249
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究是以紫外光光活化方式探討半導體感測膜在室溫下對低濃度酒氣的感測行為。紫外光光活化可有效改善傳統加熱式感測器高感測溫度及高能源消耗等缺點。本研究所使用的感測薄膜是以原子層沉積法成長在玻璃上的的二氧化鈦-二氧化錫複合薄膜,藉由改變薄膜厚度、結構以及光源強度等參數,了解各種參數對半導體酒測器感測能力的影響。結果發現,在固定二氧化鈦膜厚為6.3奈米下,越薄的二氧化錫對於酒氣有越好的響應,但發現當二氧化錫膜厚低於2.1奈米時,薄膜電阻大幅上升而無法感測。經TEM分析後發現二氧化鈦底層為不連續的顆粒狀,造成二氧化錫薄膜過薄會有不連續的情形,導致元件開路。本研究透過增加底層二氧化鈦厚度至18.8奈米,改善了連續性問題,使二氧化錫薄膜最薄可達0.6奈米,大幅提升複合膜的感測能力。

然而,除酒氣外,此複合薄膜對水氣也有很好的感測能力,表示若環境中含有水氣,則酒氣感測值會受到很大的影響。為了改善此問題,本研究後續在二氧化錫上鍍上一層親水性較二氧化錫差的極薄二氧化鈦層(約0.8奈米)形成三層膜結構,實驗發現此設計不但在乾燥環境下對酒氣響應有顯著的提升,在潮濕環境中也對酒氣有較好的選擇比。此外,最表層的二氧化鈦也保護較易受環境影響的二氧化錫薄膜,提升了元件的使用壽命。
在光源對感測能力的影響方面,本研究使用波長為310以及265奈米的光源,相較於大多數使用的365奈米光源,感測膜對它們有更好的吸收能力,可大幅節省功率消耗。研究發現響應值隨光功率增加,最後達到飽和,因此,光功率在響應到達穩定值即可,之後所增加的功率只會造成不必要的消耗。研究亦發現265奈米光源可破壞酒精分子的鍵結,促進酒精在感測膜表面的反應速率,使得265奈米光源比310奈米光源具有更佳的光活化效率。
In this study, we used UV light-activation technique to improve the alcohol gas sensing capability of semiconductor sensors at room temperature, since the UV light-activation can effectively lower the disadvantages of traditional heating sensor such as high sensing temperature and high energy consumption. The TiO2-SnO2 composite sensing films in this study were deposited on glass substrate by atomic layer deposition method. By changing the film thickness, structure, light intensity and light wavelength, the influence of various parameters on the sensing ability of semiconductor gas sensor was revealed. The result shows that when the thickness of TiO2 underlying layer was fixed at 6.3 nm, a thinner SnO2 layer has a better response to alcohol gas. However, it was found that, when the thickness of the SnO2 layer was less than 2.1 nm, the sheet resistance of TiO2-SnO2 composite film dramatically increased, making the sensor unable to sense. The TEM results show that the underlying TiO2 layer is discontinuous, which causes the SnO2 layer to become discontinuous when its thickness is less than 2.1 nm. It is why the sensing ability of TiO2-SnO2 composite films cannot be further improved by lowering the thickness of SnO2 layer below 2.1 nm. In this study, we solved the discontinuity issue by increasing the thickness of the underlying TiO2 layer to 18.8 nm. After that, we dramatically enhanced the sensing ability for TiO2-SnO2 composite films by extremely pushing the SnO2 layer thickness down to 0.6 nm.

The TiO2-SnO2 composite film also shows good moisture sensing ability. On the other hand, it indicates that the humid environment will seriously affect the sensitivity of sensors for alcohol gas. To solve this problem, we capped a very thin TiO2 layer (approximately 0.8 nm) with lower hydrophilicity than SnO2 on the SnO2 layer to form TiO2-SnO2-TiO2 structure. As expected, this three-layer composite film performed better alcohol gas sensing capability than the two-layer composite film in both dry and wet air. In addition, the top TiO2 layer can protect the SnO2 layer which is vulnerable to the environment, and the life time of the device was enhanced.

In this study, we used 310 and 265 nm light sources. Comparing to the 365 nm light source which is often used for light-activation sensors, the 310 and 265 nm light sources can enhance the light absorption of sensor and save the power consumption. The sensing results show that the response of sensor to alcohol gas increases with the increase of light intensity and then saturates finally. The optimized optical power for the light source is at a value of reaching the saturation of response, an additional power will only cause unnecessary power consumption. Besides, we also found that the 265 nm light source can break the bonds of alcohol molecules, which promotes the reaction rate of alcohol on the surface of the sensing film. It makes the 265 nm light source have better light-activation efficiency than 310 nm light source for semiconductor gas sensors.
口試委員會審定書 #
摘要 i
Abstract ii
誌謝 v
目錄 vi
表目錄 ix
圖目錄 x
第一章 前言 1
1-1 研究背景 1
1-2 研究目的 2
第二章 文獻回顧 3
2-1 氣體感測器介紹 3
2-1.1 觸媒燃燒型(Catalytic combustion gas sensor) 3
2-1.2 電化學型(Electrochemical gas sensor) 4
2-1.3 光學型(Optical gas sensors) 4
2-1.4 金屬氧化物半導體型(Metal oxide semiconductor gas sensors) 4
2-2 二氧化鈦簡介 6
2-3 二氧化錫簡介 7
2-4 原子層化學氣相沉積法理論基礎 7
2-4.1 原子層化學氣相沉積法之製程時序 8
2-4.2 原子層化學氣相沉積法的成長速率與溫度效應 10
2-5 光活化金屬氧化物半導體氣體感測之基本原理 11
2-5.1 電子/電洞對的產生 12
2-5.2 氧氣吸附 14
2-5.3 待測氣體之氧化/還原反應 14
2-6複合材料結構 16
2-7 響應結果預測 17
2-7.1 二氧化錫膜厚 17
2-7.2 水氣影響 19
2-7.3 光源影響 20
第三章 實驗方法 24
3-1 實驗流程 24
3-2 基板選擇與清洗 26
3-3 原子層沉積二氧化鈦與二氧化錫薄膜 27
3-3.1 原子層沉積系統 27
3-3.2 感測薄膜製程步驟 30
3-4 感測元件之電極製備 31
3-5 氣體感測裝置 32
3-5.1 元件電阻量測 33
3-5.2 UV-LED光源 34
3-5.3 氣體感測參數 35
3-6 薄膜品質確認與分析 40
3-6.1. 四點探針量測儀 40
3-6.2. 橢圓偏光儀 41
3-6.3. 原子力顯微鏡 42
3-6.4. UV-VIS光譜儀 43
3-6.5. 穿透式電子顯微鏡 44
第四章 結果與討論 46
4-1. 感測結果與分析 46
4-1.1. 雙層膜Glass-TiO2-SnO2試片之感測結果與分析 47
4-1.2. 三層膜Glass-TiO2-SnO2-TiO2試片之感測結果與分析 49
4-1.3. 薄膜分析 54
4-2. 濕度的感測能力與其對酒氣響應的影響 61
4-2.1. 試片對水氣的響應 61
4-2.2. 在不同濕度下的酒氣響應 65
4-3. 光源對試片的氣體感測能力影響 67
4-3.1. 光功率對酒氣響應的影響 69
4-3.2. 光波長對酒氣響應的影響 74
第五章 結論與未來展望 81
5-1. 結論 81
5-2. 未來展望 83
Reference 86
附錄 94
[1] G. Korotcenkov, “Metal oxides for solid state gas sensors: What determines our
c hoice?’’ Materials Science and Engineering B , Vol. 139, Issue 1, pp. 1 23, April
2007.
[2] 曹永忠 許智誠 蔡英德 , Ameba 程式教學 (MQ 氣體模組篇 ) , 渥瑪數位有限公
司出版 , pp. 3 7, 2016 年 8 月
[3] 楊力儼 柯廷勳 曾文甲 , 固態氣體感測器介紹 台灣儀器科技研究中心 ,
智慧氣體感測器專題 , 科儀新知 218 期 , pp. 12 15 , 2019 年 3 月
[4] 黃國政 陳奕璇 楊青青 蕭文澤 , 國內外空氣品 質感測器現況介紹 ,,"台灣儀
器科技研究中心 , 智慧氣體感測器專題 , 科儀新知 218 期 , pp. 6 , 2019 年 3

[5] J. Kong et al., “Nanotube molecular wires as chemical sensors, Science , Vol
287, pp. 622 625, January 2000.
[6] I. Eisele, T. Doll and M. Burgmair, “Low power gas detection with FET sensors,”
Sensors and Actuators B: Chemical , Vol. 78, Issues 1 3, pp. 19 25, August 2001.
[7] L. Talazac et al., “Air quality evaluation by monolithic InP based resistive
sensors,” Sensors and Actuators B: Chemical , Vol. 76, Issues 1 3, pp. 258 264,
June 2001.
[8] B. Adhikari and S. Majumdar, “Polymers in sensor applications,” Progress in
Polymer Science, Vol. 29, Issue 7, pp. 699 766, July 2004.
[9] T. Doll, J. Lechner, I. Eisele, K. Schierbaum and W. Gopel, “Ozone detection in
the ppb range with work function sensors operating at ro om temperature,”
Sensors and Actuators B: Chemical , Vol. 34, Issues 1 3, pp. 506 510, August
1996.
[10] Y. Byoun, S. Park, C. Jin, Y. J. Song and S. W. Choi, “Highly sensitive and
selective ethanol detection at room temperature utilizing holey SWCNT Sn/SnO 2
nan ocomposites synthesized by microwave irradiation,” Sensors and Actuators B:
Chemical, Vol. 290, pp. 467 476, July 2019.
[11] H. Du et al., “Formaldehyde gas sensor based on SnO 2 /In2O 3 hetero nanofibers
by a modified double jets electrospinning process,” Sensors and Actuators B:
Chemical , Vol. 166 167, pp. 746 752, May 2012.
[12] D. Deglera et al., “Extending the toolbox for gas sensor research: Operando
UV/vis iffuse reflectance spectroscopy on SnO 2 based gas sensors,” Sensors and
Actuators B: Chemical , Vo. 224, Page s 256 259, March 2016.
[13] H. Chen et al., “A comparative study on UV light activated porous TiO2 and ZnO film sensors for gas sensing at room temperature,” Ceramics International, Vol. 38, Issue 1, pp. 503-509, January 2012.
[14] F. Meng et al., “UV activated room temperature single sheet ZnO gas sensor,”,
Micro & Nano Letters , Vol. 12, Issue 10, pp.813 817, October 2017.
[15] X. Chen and S. S. Mao, “Titanium Dioxide Nanomaterials: Synthesis, Properties,
Modifications, and Applications, Chemical Reviews , Vol. 107, No. 7, pp.
2891 2959, 2007.
[16] K. M. Reddy, S. V. Manorama and A. R. Reddy, “Bandgap studies on anatase
titanium dioxide nanoparticles, Materials Chemistry and Physics , Vol. 78,
Issue 1, pp. 239 245, February 2003.
[17] C. Grimes, “Synthesis and application of highly ordered arrays of TiO2
nanotubes,” Journal of Materials Chemistry , vol.17, pp. 1451 1457, December
2012.
[18] B. Zhu, C. Xie, W. Wang, K. Huang and J. Hu, “Improvement in gas sensitivity
of ZnO thick film to volatile organic compounds (VOCs) by adding TiO2,”
M aterials Letters , Vol. 58, Issue 5, pp. 624 629, February 2004.
[19] U. Diebold, “The surface science of titanium dioxide,” Surface Science Reports ,
vol. 48, no. 5 8, pp. 53 229, January 2003.
[20] F. Bosc, D. Edwards, N. Keller, V. Keller and A. Ayral, “Mesoporous TiO2 based
photocatalysts for UV and visible light gas phase toluene degradation,” Thin
Solid Films , Vol. 495, Issues 1 2, Pages 272 279 January 2006.
[21] Lesley Smart, Elaine A. Moore, Solid State Chemistry: An Introduction. CRC
Press, 2005.
[22] N. N. Greenwood, Earnshaw: Chemistry of the elements Pergamon press oxford,
pp. 447 48, 1984.
[23] S. Baco, A. Chik, F. M. Yassin, “Study on Optical Properties of Tin Oxide Thin
Film at Different Annealing Temperature,” Journal of Science and Technology, Vol. 4, No. 1, pp.61-72, July 2012.
[24] A. M. Shevjakov, G. N. Kuznetsova, and V. B. Aleskovskii, Proceedings of the
econd USSR Conference on High Temperature Chemistry of Oxides , Leningrag,
USSR, pp. 26 29, Nov. 1965.
[25] T. Suntola and J. Antson, Finnish Patent No. 52359 (1974) and T. Suntola and
J.Antson, US Patent No. 4058430 (1977); T. Suntola A. Pakkala and S. Lindfors,
US Patent No. 4389973 (1983).
[26] 柯 志忠 林秀芬 蕭健男 ,,"原子層沉積系統設計概念與應用 台灣儀器科技
研究中心 , 原子層沉積技術與應用專題 , 科儀新知第二十九卷第一期 ,
pp14 25, ( 民國 96 年 8 月)
[27] 楊祚權 , 原子層沉積二氧化鈦薄膜於 p 型結晶矽基板表面鈍化特性之研
究 ””, 國立交通 大學照明與能源光電研究所 , 碩士論文 , 2017
[28] M. Putkonen, “Development of low temperature deposition processes by atomic
layer epitaxy for binary and ternary oxide thin films, Helsinki University of
Technology, Inorganic Chemistry Puolication Series, ISBN 951 22 5852 8,
Espoo Finland, 2002.
[29] A. F. Palmstrom, P. K. Santra and S. F. Bent, “Atomic layer deposition in
nanostructured photovoltaics: tuning optical, electronic and surface properties,”
Nanoscale , Issue 29, June
[30] H. C. M. Knoops, S. E. Potts, A. A. Bol and W. M. M . Kessels, Atomic Layer
Deposition,” in Handbook of Crystal Growth , T. Kuech, Ed. Elsevier, 2015, pp.
1101 1134.
[31] P. Camagni et al., “Photosensitivity activation of SnO2 thin film gas sensors at
room temperature,” Sensors and Actuators B: Chemical , Vol. 31 , Issues 1 2, pp.
99 103, February 1996,
[32] A. Salehi, A. Nikfarjam and D. J. Kalantari, “Pd/porous GaAs Schottky contact
for hydrogen sensing application,” Sensors and Actuators B: Chemical , Vol. 113,
Issue 1, pp. 419 427, January 2006.
[33] G. W. Hunter, P. G. N eudeck, L. Y. Chen, D. Knight and C. C. Liu, “SiC Based
Schottky Diode Gas Sensors” Materials Science Forum , Vols. 264 268, pp.
1093 1096, February 1998.
[34] I. Rýger, G. Vanko, T. Lalinský, P. Kunzo and M. Vallo, ” Pt/NiO ring gate based
Schottky diode hydrog en sensors with enhanced sensitivity and thermal stability,”
Sensors and Actuators B: Chemical , Vol. 202, Pages 1 8, October 2014.
[35] Y. Liu, J. Yu and P. T. Lai, “Investigation of WO3/ZnO thinfilm
heterojunction based Schottky diodes for H2 gas sensing,” In ternational Journal
of Hydrogen Energy , Vol. 39, Issue 19, Pages 10313 10319, June 2014.
[36] Zhengzhou Winsen Electronics Technology Co., Ltd, “Alcohol Gas Sensor
Model MQ 3 Manual, Ver. 1.3.
[37] I. Karaduman, M. Demir, D. E. Yıldız and S. Acar, “CO2 gas detectio n
properties of a TIO2/Al2O3 heterostructure under UV light irradiation,” Physica
Scripta , Vol. 90(5), April
[38] J. Wang, P. Zhang, J. Q. Qi and P. J. Yao, “Silicon based micro gas sensors for
detecting formaldehyde. Sensors and Actuators B: Chemical , Vo l. 136, Issue 2,
pp. 399 404, March 2009.
[39] N. Yamazoe, “Toward innovations of gas sensor technology,” Sensors and
Actuators B: Chemical , Vol. 108, Issues 1 2, pp. 2 14, July 2005.
[40] J. A. Dirksen, K. Duval and T. A. Ring, “NiO thin film formaldehyde gas senso r,”
Sensors and Actuators B: Chemical Vol. 80, Issue 2, pp. 106 115, November
2001.
[41] Donald A. Neamen, Semiconductor Physics and Devices: Basic Principles,
Fourth Edition Americas, New York: McGraw Hill, 2012.
[42] E. Espid, “UV LED Photo Activated Metal Oxide Semiconductors for Gas
Sensing Application: Fabrication and Performance Evaluation,” The University
of British Columbia, October 2015.
[43] E. Comini, a Cristalli, G. Faglia and G. Sberveglieri, “Light enhanced gas
sensing properties of indium oxide and tin dio xide sensors,” Sensors and
Actuators B , Vol.65, Issues 1 3, pp. 260 263, June 2000.
[44] S. W. Fan, A. K. Srivastava and V. P. Dravid, “UV activated room temperature
gas sensing mechanism of polycrystalline ZnO,” Applied Physics Letters , Vol. 95
pp. 142106 142 113, 2009.
[45] J. Zhai, L. Wang, D. Wang, Y. Lin, D. He and T. Xie, “UV illumination
room temperature gas sensing activity of carbon doped ZnO microspheres,”
Sensors and Actuators B: Chemical , Vol. 161, Issue 1, pp. 292 297, January
2012.
[46] C. Wang, L. Yin, L. Z hang, D. Xiang, R. Gao, “Metal oxide gas sensors:
sensitivity and influencing factors,” Sensors , Vol. 10, pp. 2088 2106, March
2010.
[47] Y. Muraoka, N. Takubo and Z. Hiroi, “Photoinduced conductivity in tin dioxide
thin films,” Journal of Applied Physics , 105 pp. 103702, 2009.
[48] J. Shang, “Structure and photocatalytic performances of glass/SnO2/TiO2
interface composite film,” Applied Catalysis A: General , Vol. 257, Issue 1, pp.
25 32, January 2004.
[49] C. Xu, J. Tamaki, N. Miura and N. Yamazoe “Grain size effect s on gas sensitivity
of porous Sn02 based elements,” Sensors and Actuators B , Vol. 3, pp.147 155,
1991.
[50] H. Ogawa, M. Nishikawa and A. Abe, “Hall measurement studies and an
electrical conduction model of tin oxide ultrafine particle films,” Journal of
Appli ed Physics , Vol. 53(6) , pp. 4448 4455, 1982.
[51] X. Dua and S.M. George, “Thickness dependence of sensor response for CO gas
sensing by tin oxide films grown using atomic layer deposition,” Sensors and Actuators B: Chemical, Vol. 135, Issue 1, pp. 152-160, December 2008.
[52] J. Sun et al., “UV activated room temperature metal oxide based gas sensor
attached with reflector,” Sensors and Actuators B: Chemical , Vol. 169, pp.
291 296, July 2012.
[53] C Guo et al., Synthesis, “UV response, and room temperature ethanol sen sitivity
of undoped and Pd doped coral like SnO2 Journal of Nanoparticle Research ,
Vol. 15, September 2013
[54] J. Li, D. Gu, Y. Yang, H. Du and X. Li, “UV Light Activated SnO2/ZnO
Nanofibers for Gas Sensing at Room Temperature,” Frontiers in Materials , Vol.
6, Article 158, July 2019.
[55] W. S. Shih, S. J. Young, L. W. Ji, W. Water and H. W. Shiua TiO2 Based Thin
Film Transistors with Amorphous and Anatase Channel Layer Journal of The
Electrochemical Society , Vol. 158 (6), pp. 609 611, March 2011.
[56] B. P. J. de Lac y Costello, R. J. Ewen, N. M. Ratcliffe and M. Richards, “Highly
sensitive room temperature sensors based on the UV LED activation of zinc
oxide nanoparticles,” Sensors and Actuators B: Chemical , Vol.134(2), pp.
945 952, September 2008.
[57] Z. Q. Zheng, J. D. Yao, B. Wang and G. W. Yang “Light controlling, flexible and
transparent ethanol gas sensor based on ZnO nanoparticles for wearable devices,”
Scientific Reports , Vol. 5, Article 11070, June
[58] B. Fabbri et al., “Chemoresistive properties of photo activa ted thin and thick
ZnO films,” Sensors and Actuators B: Chemical , Vol. 222, pp. 1251 1256,
January 2016.
[59] E Garcia Caurel et al., “Application of Spectroscopic Ellipsometry and Mueller
Ellipsometry to Optical Characterization,” Applied Spectroscopy , Vol. 6 7, Issue 1,
pp.1 21, January 2013.
60] 國立成功大學微奈米科技中心儀器介紹網頁
http://cmnst.ncku.edu.tw/p/412 1006 13238.php
[61] 黃陞燁 , 以原子層沉積法成長二氧化錫與二氧化錫 二氧化鈦複合薄膜對氫
氣及酒氣感測特性 ””, 國立交通大學照明與能源光電研究所 , 碩士論文 , 2019
[62] J. Goldstein et al., Scanning Electron Microscopy and X Ray Microanalysis.
Spri nger , springerlink,
[63] Talinungsang et al., “TiO2/SnO2 and SnO2/TiO2 heterostructures as
photocatalysts for degradation of stearic acid and methylene blue under UV
irradiation Superlattices and Microstructures , Vol. 129, pp.105 114, 2019
[64] I . S Kang, J Xi and H . Y Hu , “Photolysis and photooxidation of typical gaseous
VOCs by UV Irradiation: Removal performance and mechanisms Frontiers of
Environmental Science & Engineering , Vol. 12, March 2018
[65] 謝晶曦 , 紅外光譜在有機化學和藥物化學中的應用 , 中華人民共和國 , 科學
出版社 ,
[66] T Luttr ell, S Halpegamage, J Tao, A Kramer and E Sutter, “Why is anatase a
better photocatalyst than rutile? Model studies on epitaxial TiO 2 films,”
Scientific reports Vol.4(1), February 2014.
[67] 王姗 , 基于叉指电极的气体传感器的特性及加工研究 成都理工大学电子
与通信工程 , 碩士論文 , 2017
[68] B. Gong, et al., “UV irradiation assisted ethanol detection operated by the gas
sensor based on ZnO nanowires/optical fiber hybrid structure.” Sensors and
Actuators B: Chemical , Vol.245, pp. 821 827, June 2017.
電子全文 電子全文(網際網路公開日期:20260112)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊