|
1.Alonso Jr, M., & Barreto, A. (2003). An Image Processing Approach to Pre-compensation for Higher-Order Aberrations in the Eye. Systemics Cybernetics and Informatics, 3(1), 67-85. 2.Bousseau, A. Virtual Glasses: The Myopic Revenge. 1st April 2008 Rodolphe Héliot & Antoine Zimmermann RAFT Editors, 25. 3.Montalto, C., Garcia-Dorado, I., Aliaga, D., Oliveira, M. M., & Meng, F. (2015). A total variation approach for customizing imagery to improve visual acuity. ACM Transactions on Graphics (TOG), 34(3), 1-16. 4.Sekko, E., Thomas, G., & Boukrouche, A. (1999). A deconvolution technique using optimal Wiener filtering and regularization. Signal processing, 72(1), 23-32. 5.Haldorsen, J. B., Miller, D. E., & Walsh, J. J. (1994). Multichannel Wiener deconvolution of vertical seismic profiles. Geophysics, 59(10), 1500-1511. 6.Biggs, D. S., & Andrews, M. (1997). Acceleration of iterative image restoration algorithms. Applied optics, 36(8), 1766-1775. 7.Dey, N., Blanc‐Feraud, L., Zimmer, C., Roux, P., Kam, Z., Olivo‐Marin, J. C., & Zerubia, J. (2006). Richardson–Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution. Microscopy research and technique, 69(4), 260-266. 8.He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778). 9.Levin, A. (2007). Blind motion deblurring using image statistics. In Advances in Neural Information Processing Systems (pp. 841-848). 10.Cho, S., & Lee, S. (2009). Fast motion deblurring. In ACM SIGGRAPH Asia 2009 papers (pp. 1-8). 11.Shan, Q., Jia, J., & Agarwala, A. (2008). High-quality motion deblurring from a single image. Acm transactions on graphics (tog), 27(3), 1-10. 12.Nayar, S. K., & Ben-Ezra, M. (2004). Motion-based motion deblurring. IEEE transactions on pattern analysis and machine intelligence, 26(6), 689-698. 13.Yuan, L., Sun, J., Quan, L., & Shum, H. Y. (2008). Progressive inter-scale and intra-scale non-blind image deconvolution. Acm Transactions on Graphics (TOG), 27(3), 1-10. 14.Fortunato, H. E., & Oliveira, M. M. (2014). Fast high-quality non-blind deconvolution using sparse adaptive priors. The Visual Computer, 30(6-8), 661-671. 15.Sun, L., Cho, S., Wang, J., & Hays, J. (2014, September). Good image priors for non-blind deconvolution. In European conference on computer vision (pp. 231-246). Springer, Cham. 16.Rossi, R. J. (2018). Mathematical statistics: an introduction to likelihood based inference. John Wiley & Sons. 17.Sinha, A., Lee, J., Li, S., & Barbastathis, G. (2017). Lensless computational imaging through deep learning. Optica, 4(9), 1117-1125. 18.Debevec, P. E., & Malik, J. (2008). Recovering high dynamic range radiance maps from photographs. In ACM SIGGRAPH 2008 classes (pp. 1-10). 19.Van Nieuwenhove, V., De Beenhouwer, J., De Carlo, F., Mancini, L., Marone, F., & Sijbers, J. (2015). Dynamic intensity normalization using eigen flat fields in X-ray imaging. Optics express, 23(21), 27975-27989. 20.Duda, R. O., & Hart, P. E. (1972). Use of the Hough transformation to detect lines and curves in pictures. Communications of the ACM, 15(1), 11-15. 21.Joshi, N., Szeliski, R., & Kriegman, D. J. (2008, June). PSF estimation using sharp edge prediction. In 2008 IEEE Conference on Computer Vision and Pattern Recognition (pp. 1-8). IEEE. 22.Shannon, C. E. (1948). A mathematical theory of communication. The Bell system technical journal, 27(3), 379-423. 23.Huffman, D. A. (1952). A method for the construction of minimum-redundancy codes. Proceedings of the IRE, 40(9), 1098-1101. 24.Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing, 13(4), 600-612.
|