跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/24 17:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡睿峰
研究生(外文):Tsai, Jui-Feng
論文名稱:基於分模多工矽光子積體光路元件之研究
論文名稱(外文):Research of Silicon Photonics Integrated Devices for Mode-Division-Multiplexing
指導教授:鄒志偉
指導教授(外文):Chow, Chi-Wai
口試委員:賴暎杰張祐嘉葉建宏
口試委員(外文):Lai, Yin-ChiehChang, You-ChiaYeh, Chien-Hung
口試日期:2020-09-25
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:109
語文別:英文
論文頁數:74
中文關鍵詞:矽光子積體光路分模多工能量分流二維光柵跨晶片傳輸
外文關鍵詞:silicon photonicspassive componentsmode division multiplexingpower splitterchip-to-chip2D grating
相關次數:
  • 被引用被引用:0
  • 點閱點閱:256
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
綜觀這十年,積體電路依舊遵循著Gordon Moore提出的摩爾定律曲線,每約兩年晶片上元件的密度會變為兩倍,但摩爾本人在論文內有提到這條成長曲線將因物理製程的極限,導致製造不敷成本而在2030年漸漸趨緩,但是全球對於網路傳輸的流量需求卻是每年不斷地以指數增長,如何化解危機提升傳輸量成為亟需解決的課題。
為了有效舒緩與解決未來資訊量爆炸的問題,矽光子的積體光通訊技術提供了新的思維,首先光子本身並無質量,所以能在不發熱的情況下傳輸得比電子快,最重要的是其能與現今成熟的CMOS半導體製程相容,使得製造成本可以大幅降低。其中在矽光子領域有不少提升傳輸量的技術,例如分波長多工、分模多工等等,而我們團隊希望使用分模多工的技術,藉由模態彼此互相正交的特性,就能將大量資訊乘載在不同的模態上面,如此即可在資訊互相不干擾的情況,達到增加傳輸量的目的,我們設計的縮小版四通道分模多工器利用OFDM選取ITU中的48個波長做為載波,其傳輸速度可達到11.6Tbit/s。另外,我也在研究中探討模態傳輸會需要能量分流的情況,因此設計出可應用於分模多工的寬頻三模態能量分流器,期許可以搭配各種多工技術形成一個有效率的傳輸系統。
另外我們也考量到日後多模態的跨晶片傳輸需求,進而參考各式文獻中的二維光柵,試圖研究出如何讓其能傳輸更多的模態,最後我們設計出一個能在1550nm波長下運作的22μm*22μm二維光柵,我們將10G的OOK打入此元件並透過1.3m的多模光纖傳輸至另一片晶片接收,其接收光強與誤碼率和眼圖的表現都顯示此二維光柵可供給雙模態在跨晶片傳輸中被充分使用。
Integrated electronic technology development is still following Moore’s law proposed by Gordon Moore in recent years, which indicates the element density on the chip will be two times every two years. However, Moore said this growth will slow down around 2030 because of physical limitation, but data traffic has a continuing exponential growth. To solve the data explosion problem, silicon integrated photonics devices might be the new direction to this question.
First, photons do not have mass, so they can transmit faster than electrons without heat emission. Second, the mature CMOS fabrication technology can be used to fabricate silicon integrated photonics devices at high volume and low cost. There are several multiplexing technologies to increase data capacity, such as wavelength-division-multiplexing (WDM), mode-division-multiplexing (MDM) etc. We utilize the characteristic of orthogonality between different modes to design a four channel MDM, then we can transmit data carried by different modes without mode disturbance to increase data capacity. In our proposed reduced size four channel MDM, we pick 48 wavelengths in ITU’s DWDM system using OFDM to transmit data, and we reach a total capacity of 11.6Tbit/s for four channels.
We also do some research on triple-mode 3dB power splitter for data transmitted through different modes. This device can be applied in around 40nm window and also can work for three modes. With these research, our group is looking forward to building an efficient transmission system under mode-division-multiplexing technology.
Besides, we also do research in chip to chip transmission for multiple modes. We take other paper’s 2D grating as our reference, and try to figure out how to transmit higher order modes. Finally, we design a 2D grating at a size of 22μm*22μm for center wavelength 1550nm. We use 10G OOK signal to carry data and utilize 1.3m FMF to receive these data to transmit to another chip. The eye diagram and bit error rate results both indicate this element can work well for dual modes in chip to chip transmission.
中文摘要: I
Abstract: II
致謝 III
目錄 IV
Chapter 1. Introduction 1
1.1 Introduction of silicon photonics 1
1.2 Motivation 4
1.3 Thesis structure 7
Chapter 2. Theory and experiment of four channel MDM 7
2.1 Process of mode-division multiplexing components 7
2.2 Coupled mode theory (CMT) 9
2.3 Literature review 15
2.4 Design of four channel MDM 17
2.4.1 Four channel MDM (Width of access waveguide = 0.45μm) 17
2.4.2 Four channel MDM (Width of access waveguide = 0.35μm) 18
2.5 Optical simulations and analysis 19
2.5.1 All region simulations 19
2.5.2 Analysis of coupling length 23
2.5.3 Analysis of bus waveguide width 24
2.5.4 Analysis of access waveguide width 26
2.5.5 Analysis of crosstalk between output ports 28
2.6 Experiment results and analysis 30
2.6.1 Introduction of OFDM technology 31
2.6.2 Experiment structure 32
2.6.3 Experiment results 34
Chapter 3. Broadband triple mode 3dB power splitter 36
3.1 Literature review 37
3.2 Theory of 3dB power splitter 39
3.3 Design of broadband triple mode 3dB power splitter 40
3.4 Optical simulations and analysis 41
3.4.1 Sub region simulations 41
3.4.2 All region simulations 45
3.4.3 Analysis of coupling length 47
3.4.4 Analysis of bus waveguide width 49
3.4.5 Analysis of access waveguide width 51
3.4.6 Analysis of Y-branch width 53
3.4.7 All region mode crosstalk and power splitting ratio 54
Chapter 4. 2D grating experiment from chip to chip using FMF 58
4.1 Comparison between 2D gratings 58
4.2 Optical simulations and analysis 61
4.3 Experiment results 66
Chapter 5. Conclusion 68
References 70
Publications 74
[1] Cisco Annual Internet Report - https://www.cisco.com/c/en/us/solutions/executive-perspectives/annual-internet-report/index.html
[2] Cisco Visual Networking Index: Forecast and Trends, 2017–2022 White Paper
[3] Rupp, Karl, and Siegfried Selberherr. "The economic limit to Moore's law." IEEE Transactions on Semiconductor Manufacturing 24.1 (2010): 1-4.
[4] Photonics - SOI, for high-speed optical transceivers in data centers - https://www.soitec.com/en/products/photonics-soi
[5] Goel, Sanket. "Optobiochips for Microcytometry (PhD thesis, Electrical Engineering, University of Alberta by Sanket Goel-Jan, 2006)." (2006).
[6] Yamada, K., et al. "Integrated Silicon-based Optical interconnect for Fast Compact Energy-efficient Electronic Circuit Systems| NTT Technical Review." NTT Technical Review 11.2 (2013).
[7] Tom’s hardware news - https://www.tomshardware.com/news/intel-silicon-photonics-transceiver-400g-39028.html
[8] Silicon photonics has reached its tipping point -http://www.yole.fr/SiPhotonics_MarketStatus.aspx#.X0ofsOgzaUk
[9] Study Finds Increasing Risk of Electronics Overheating - https://www.engineering.com/DesignerEdge/DesignerEdgeArticles/ArticleID/13622/Study-Finds-Increasing-Risk-of-Electronics-Overheating.aspx
[10] Akiyama, Suguru, et al. "12.5-Gb/s operation with 0.29-V· cm V π L using silicon Mach-Zehnder modulator based-on forward-biased pin diode." Optics express 20.3 (2012): 2911-2923.
[11] Yu, Byung-Min, et al. "Single-chip Si optical single-sideband modulator." Photonics Research 6.1 (2018): 6-11.
[12] Binetti, P. R. A., et al. "InP-based membrane photodetectors for optical interconnects to Si." 2007 4th IEEE International Conference on Group IV Photonics. IEEE, 2007.
[13] Silicon photonics platform supports 50 Gb/s NRZ optical lanes -https://www.eenewsanalog.com/news/silicon-photonics-platform-supports-50-gbs-nrz-optical-lanes
[14] New silicon photonics technology delivers faster data traffic in data centers - https://www.imec-int.com/en/imec-magazine/imec-magazine-may-2017/new-silicon-photonics-technology-delivers-faster-data-traffic-in-data-centers
[15] Mode division multiplexing for ultrafast optical fiber communications -http://www-g.eng.cam.ac.uk/CMMPE/OldSite/telecoms.html
[16] Wavelength division multiplexing - https://www.wikiwand.com/en/Wavelength-division_multiplexing/
[17] ITU 100 Ghz Frequency Grid Math - https://www.mathscinotes.com/2014/04/itu-100-ghz-frequency-grid-math/
[18] The future of high-speed technology -https://www.edmundoptics.com/knowledge-center/trending-in-optics/photonic-electronic-integrated-circuits/
[19] Mulugeta, Tadesse, and Mahmoud Rasras. "Silicon hybrid (de) multiplexer enabling simultaneous mode and wavelength-division multiplexing." Optics Express 23.2 (2015): 943-949.
[20] Miller, S. E. "Coupled wave theory and waveguide applications." Bell System Technical Journal 33.3 (1954): 661-719.
[21] Pierce, John Robinson. "Coupling of modes of propagation." Journal of Applied Physics 25.2 (1954): 179-183.
[22] Dai, Daoxin, Jian Wang, and Yaocheng Shi. "Silicon mode (de) multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light." Optics letters 38.9 (2013): 1422-1424.
[23] OFDM 基本原理 - https://ir.nctu.edu.tw/bitstream/11536/45879/7/350507.pdf
[24] Bahai, Ahmad RS, Burton R. Saltzberg, and Mustafa Ergen. Multi-carrier digital communications: theory and applications of OFDM. Springer Science & Business Media, 2004.
[25] Is BER the bit error ratio or the bit error rate - https://www.edn.com/is-ber-the-bit-error-ratio-or-the-bit-error-rate/
[26] FEC codes for 400 Gbps 802.3bs -https://www.ieee802.org/3/bs/public/14_11/parthasarathy_3bs_01a_1114.pdf
[27] What is Phase Modulation - https://www.electronics-notes.com/articles/radio/modulation/phase-modulation-what-is-pm-tutorial.php
[28] Wang, Jian, Sailing He, and Daoxin Dai. "On‐chip silicon 8‐channel hybrid (de) multiplexer enabling simultaneous mode‐and polarization‐division‐multiplexing." Laser & Photonics Reviews 8.2 (2014): L18-L22.
[29] Hsu, Yung, et al. "2.6 Tbit/s on-chip optical interconnect supporting mode-division-multiplexing and PAM-4 signal." IEEE Photonics Technology Letters 30.11 (2018): 1052-1055.
[30] Luo, Yuchan, et al. "Integrated dual-mode 3 dB power coupler based on tapered directional coupler." Scientific reports 6 (2016): 23516.
[31] Xu, Hongnan, and Yaocheng Shi. "Ultra-broadband dual-mode 3 dB power splitter based on a Y-junction assisted with mode converters." Optics Letters 41.21 (2016): 5047-5050.
[32] Taillaert, Dirk, et al. "A compact two-dimensional grating coupler used as a polarization splitter." IEEE Photonics Technology Letters 15.9 (2003): 1249-1251.
[33] Luo, Yannong, et al. "Low-loss two-dimensional silicon photonic grating coupler with a backside metal mirror." Optics letters 43.3 (2018): 474-477.
[34] Xue, Yanyun, et al. "Two-dimensional silicon photonic grating coupler with low polarization-dependent loss and high tolerance." Optics express 27.16 (2019): 22268-22274.
[35] Kopp, Christophe, et al. "Enhanced fiber grating coupler integrated by wafer-to-wafer bonding." Journal of lightwave technology 29.12 (2011): 1847-1851.
[36] Tong, Yeyu, et al. "Efficient mode multiplexer for few-mode fibers using integrated silicon-on-insulator waveguide grating coupler." IEEE Journal of Quantum Electronics 56.1 (2019): 1-7.
電子全文 電子全文(網際網路公開日期:20250928)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top