跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.248) 您好!臺灣時間:2023/01/28 13:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳嘉葳
研究生(外文):Chen, Jia-Wei
論文名稱:鈣鈦礦微米至奈米雷射之研究
論文名稱(外文):Study of Perovskite Laser in Micro- to Nano- Scales
指導教授:盧廷昌盧廷昌引用關係
指導教授(外文):Lu, Tien-Chang
口試委員:陳方中李柏璁施閔雄
口試委員(外文):Chen, Fang-ChungLee, Po-TsungShih, Min-Hsiung
口試日期:2020-10-13
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:109
語文別:英文
論文頁數:58
中文關鍵詞:鈣鈦礦奈米雷射楊式干涉表面電漿奇偶性
外文關鍵詞:perovskitenanolaseryoung's interferencesurface plasmaparity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:79
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鈣鈦礦奈米雷射擁有包含高吸收、小尺寸與波長易調變的特性,使得鈣鈦礦奈米雷射可以在許多領 域中發揮特性。本篇論文主要探討鈣鈦礦雷射在光學繞射極限附近的雷射特性,並藉由楊氏干涉系統來辨別不同模態的差異。在研究中,我們分別在藍寶石基板與銀薄膜上轉移了不同尺寸的鈣鈦礦,並首先利用原子力顯微鏡觀察鈣鈦礦的結構特性並篩選出適合的結構。再來,藉由 u-PL系統我們觀察到藍寶石基板上與銀薄膜上的鈣鈦礦雷射因尺寸微縮造成雷射閾值有不同的變化,我們也利用楊氏干涉系統歸納同橫模間不同縱模的特性並發現銀薄膜上的鈣鈦礦雷射隨著尺寸微縮有非常大的群折射率。我們搭配理論模擬與實驗對不同基板上的隨著尺寸微縮的鈣鈦礦進行特性上的比較。
Perovskite nanolaser have numerous characteristics including high absorption coefficient, small size and tunable bandgap. These advantages make it promising in multiple fields, and attract many researchers attend to related researches. In this research, we discussed the lasing properties of perovskite laser with its size around diffraction limits and observed its mode difference using young’s interference system. To achieve that, we first respectively transfer perovskite onto sapphire and silver substrate, perceive its structural characteristic and select out the fitted one. Then, with the help of u-PL system, we found out that the threshold changes differently for silver substrate and sapphire as the downsizing of the perovskite happens. Also, we came up with a method to classify modes on the same perovskite sample and found out that the group index of perovskite on silver is large as the size shrink. Last, we analyzed our experimental data along with our simulation results to thoroughly discussed the distinctions between perovskite on different substrate as the size minimizes.
摘 要 i
Abstract ii
Acknowledgement iii
Contents iv
List of Figures vi
Chapter 1 Preface 1
1.1 Introduction to LASER 1
1.2 Introduction to perovskite 4
1.3 Perovskite application on light-emitting device 6
1.4 Introduction to surface plasmon 8
1.5 Previous report on cavity analysis and introduction to young’s interference 13
1.6 Motivation 16
Chapter 2 Experimental Instruments 18
2.1 Fabrication instruments and materials 18
2.1.1 PDMS fabrication 18
2.1.2 Perovskite micro/nano scale fabrication 19
2.1.3 Atomic layer deposition system (ALD) 21
2.1.4 E-gun evaporator 22
2.2 Measurement & Analysis instruments 23
2.2.1 Scanning Electron Microscopy 23
2.2.2 Atomic Force Microscope (AFM) 24
2.2.3 Micro-photoluminescence measurement system( u-PL) 25
2.2.4 4-f system 26
2.2.5 Finite element method 27
Chapter 3 Fabrication Process & Measurement Method 30
3.1 Sample fabrication process 30
3.2 AFM measurement method 33
3.3 Measuring method combining young’s interference and polarization 34
Chapter 4 Lasing Behavior of perovskite laser on different condition 37
4.1 Discussion on morphology with AFM result 37
4.2 Simulation Results 38
4.3 Relation on threshold and width 43
4.4 Polarizaion of perovskite laser on different substrate 45
4.5 Relation on group index and width 47
Chapter 5 Conclusion 53
References 54
[1] 王興宗、盧廷昌, 半導體雷射導論,五南出版社, 民國九十七年。
[2] T. H. Maiman. "Stimulated Optical Radiation in Ruby", Nature, vol. 187, p. 493-494, Aug 1960.
[3] S. De Wolf et al., "Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance," The journal of physical chemistry letters, vol. 5, no 6, pp. 1035-1039, 2014
[4] S. D. Stranks et aL,"Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber Science, vol. 342, no. 6156, pp. 341-344, 2013
[5] T. Leijtens et al., "Electronic properties of meso-superstructured and planar organometal halide perovskite films: charge trapping, photodoping, and carrier mobility," ACS nano, vol. 8, no. 7, pp 7147-7155, 2014
[6] G. Xing et al.,"Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3Pbl3, Science, vol. 342, no. 6156, pp.344-347, 2013
[7] D. Shi et al, "Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals, "Science, vol. 347, no. 6221, pp. 519-522,2015
[8] S. D. Stranks, H. J. Snaith st al., "Recombination kinetics in organic-inorganic perovskite: excitons, free charge, and sub-gap states," Physical Review Applied, vol. 2, no 3, p. 034007, 2014
[9] B. R. Sutherland and E. H. Sargent, "Perovskite photonic sources, Nature Photonics, vol. 10, no 5, pp 295-302, 2016
[10] A. Kojima, T Miyasaka et al., "Organometal halide perovskites as visible-light sensitizers for photovoltaic cells," Journal of the American Chemical Society, vol. 131, no 17, pp. 6050-6051, 2009
[11] H. S. Kim, N. G. Park et al., “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep., vol. 2, pp. 591, Aug 2012.
[12] W. S. Yang, S. I. Seok et al., “High-performance photovoltaic perovskite layers fabricated through intramolecular exchange,” Science, vol. 348, issue 6240, pp. 1234, Jun 2015.
[13] E. H. Anaraki, J.-P. Correa-Baena et al., “Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide,” Energy Environ. Sci., vol. 9, issue 10, pp. 3128, Sep 2016.
[14] C. Momblona, H. J. Bolink et al., “Efficient vacuum deposited p-i-n and n-i-p perovskite solar cells employing doped charge transport layers,” Energy Environ. Sci., vol. 9, issue 11, pp. 3456, Sep 2016.
[15] S. S. Shin, S. I. Seok et al., “Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells,” Science, vol. 356, issue 6634, pp. 167, Mar 2017.
[16] M. Stolterfoht, D. Neher et al., “Approaching the fill factor Shockley–Queisser limit in stable, dopant-free triple cation perovskite solar cells,” Energy Environ. Sci., vol. 10, issue 6, pp. 1530, May 2017.
[17] Best Research-Cell Efficiency Chart, 2020. https://www.nrel.gov/pv/cell-efficiency.html (accessed Oct 1, 2020)
[18] P. Roy, A. Khare et al., "A review on perovskite solar cells: Evolution of architecture, fabrication techniques, commercialization issues and status," Solar Energy, Vol. 198, pp. 665-688, March 2020
[19] Cao Y et al. "Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures," Nature, vol.562, pp.249–53, 2018
[20] Y. Fu, H. Zhu, and S. Jin et al. " Broad Wavelength Tunable Robust Lasing from Single-Crystal Nanowires of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, I)," ACS Nano, vol. 10, no. 8, pp. 7963, Aug 2016
[21] Tan, Z., Moghaddam, R., Lai, M. et al. "Bright light-emitting diodes based on organometal halide perovskite," Nature Nanotech vol. 9, pp. 687–692, Aug 2014.
[22] H. Cho et al., "Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes," Science, vol. 350, no.6265, pp.1222-1225, Dec 2015
[23] M. Saliba, M. K. Riede et al., "Structured Organic–Inorganic Perovskite toward a Distributed Feedback Laser," Adv. Mater., Vol 28, no. 5, pp. 923-929, Feb 2016
[24] S. T. Chen, A. Nurmikko et al., “A Photonic Crystal Laser from Solution Based Organo-Lead Iodide Perovskite Thin Films,” ACS Nano, vol. 10, issue 4, pp. 3959–3967, Mar. 2016
[25] S. Chen, A. Nurmikko et al., " High-Q, Low-Threshold Monolithic Perovskite Thin-Film Vertical-Cavity Lasers," Adv. Mater., Vol. 29, no. 16, Apr, 2017
[26] M. H. Huang, P. Yang et al., “Room-temperature ultraviolet nanowire nanolasers,” Science, vol. 292, issue 5523, pp. 1897, Jun 2001.
[27] J. Wang, C. M. Lieber et al., “Highly polarized photoluminescence and photodetection from single indium phosphide nanowires,” Science, vol. 293, issue 5534, pp. 1455, Aug 2001.
[28] D. J. Sirbuly, P. Yang et al., “Optical routing and sensing with nanowire assemblies,” Proc. Natl. Acad. Sci. USA, vol. 102, issue 22, pp. 7800, May 2005.
[29] R. M. Ma, X. Zhang et al., “Explosives detection in a lasing plasmon nanocavity,” Nat. Nanotechnol., vol. 9, issue 8, pp. 600, Aug 2014.
[30] Y. Cui, C. M. Lieber, “Functional nanoscale electronic devices assembled using silicon nanowire building blocks,” Science, vol. 291, issue 5505, pp. 851, Feb 2001.
[31] J. C. Johnson, R. J. Saykally et al., “Single gallium nitride nanowire lasers,”Nat. Mater., vol. 1, issue 2, pp. 106, Oct 2002.
[32] X. Duan, C. M. Lieber et al., “Single-nanowire electrically driven lasers,” Nature, vol. 421, issue 6920, pp. 241, Jan 2003.
[33] Zhu, H., Fu, Y., Meng, F. et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nature Mater 14, 636–642 (2015).
[34] Q. Zhang, Q Xiong et al. "High‐Quality Whispering‐Gallery‐Mode Lasing from Cesium Lead Halide Perovskite Nanoplatelets," Adv. Func. Mater., Vol. 26, no. 34, pp. 6238, Sep 2016
[35] Q. Shang, Q, Zhang et al., " Surface Plasmon Enhanced Strong Exciton–Photon Coupling in Hybrid Inorganic–Organic Perovskite Nanowires," Nano Lett., vol. 18, no. 6, pp. 3335, May 2018
[36] C. Huang, Q. Song et al., " Formation of Lead Halide Perovskite Based Plasmonic Nanolasers and Nanolaser Arrays by Tailoring the Substrate," ACS Nano, vol. 12, no. 4, pp. 3865–3874, Apr 2018,
[37] S. A. Maier., Plasmonics: fundamentals and applications, Springer Science & Business Media, New York, 2007.
[38] Wang, S., Wang, X., Li, B. et al. "Unusual scaling laws for plasmonic nanolasers beyond the diffraction limit," Nat. Commun. vol. 8, no. 1889, Dec 2017.
[39] L. Sun, R. Agarwal et al., " Resolving Parity and Order of Fabry–Pérot Modes in Semiconductor Nanostructure Waveguides and Lasers: Young’s Interference Experiment Revisited," Nano Lett., vol. 14, no. 11, pp. 6564–6571, Apr 2014
[40] F. Chen, Z. Shi et al., “Structure Evolution of CH3NH3PbBr3 Single Crystal Grown in N,N-Dimethylformamide Solution,” Cryst. Growth Des., vol.18, no. 5, pp. 3132–3137, Apr 2018
[41] Q. Liao, H. Fu et al., “Perovskite Microdisk Microlasers Self-Assembled from Solution,” Adv. Mater., vol. 27, pp. 3405−3410, Jun 2015.
電子全文 電子全文(網際網路公開日期:20251105)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊