跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.174) 您好!臺灣時間:2024/12/03 19:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林佳逸
研究生(外文):Lin, Chia-Yi
論文名稱:利用飛秒瞬態吸收光譜研究錫鈣鈦礦之緩解動力學
論文名稱(外文):Investigation of Tin Perovskite Relaxation Dynamics via Femtosecond Transient Absorption Spectroscopy
指導教授:刁維光
指導教授(外文):Diau, Wei-Guang
口試委員:太田信廣楊耀文
口試委員(外文):Nobuhiro OhtaYang, Yaw-Wen
口試日期:2020-07-31
學位類別:碩士
校院名稱:國立交通大學
系所名稱:應用化學系分子科學碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:109
語文別:英文
論文頁數:64
中文關鍵詞:二維量子井錫鈣鈦礦飛秒瞬態吸收光譜
外文關鍵詞:Tin PerovskiteTwo-Dimensional Quantum WellFemtosecond Transient Absorption Spectroscopy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:405
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用超快瞬態吸收光譜研究了二維(2D)和準二維(quais-2D)錫鈣鈦礦的激子和自由載流子結合動力學。我們利用線性丁基銨(BA)陽離子為阻擋層(barriers)來製造二維((BA)2FAn-1SnnI3n+1)鈣鈦礦,其中n = 1、2、5以及10。使用低角度X射線衍射圖(low angle XRD),GWIAX,SEM,吸收,光致發光(PL)測量來確認鈣鈦礦薄膜中二維結構的形成。 從n = 1和n =2的薄膜吸收光譜和PL光譜,由於量子侷限效應而顯示出尖銳的激子峰。然而,n = 5和n = 10樣品的吸收光譜和PL光譜未顯示任何量子侷限效應。此外,通過擬合所有樣品的吸收帶邊緣,發現隨著量子阱厚度從n = 1增加到n = 10,能帶(band gap)和激子結合能(exction binding energy)都變小。從PL衰減測量結果顯示,隨著量子阱厚度的增加,樣品的生命期變得更長。降低的結合能和增加的樣品生命期結果證明了,隨著量子阱厚度的增加,量子阱的自由載流子性質增強。我們也利用超快瞬態吸收光譜測量來這些樣品,以進一步了解樣品的性質以及激子和自由載流子在其光學性質中的作用。 n = 1和n = 2樣品的TA光譜類似於具有激子性質的量子阱的TA光譜,而n = 5和n = 10的TA光譜類似於3D FASnI3。因此,本文進一步討論了激子(exctions)和自由載體(free carriers)的作用以及他們的重組途徑的機制。
In this thesis, excitonic and free carrier recombination dynamics of two dimensional and quais two dimensional tin perovskites are investigated using ultrafast transient absorption spectroscopy. Linear butylammonium (BA) cations were used as barrier layers during the fabrication of two dimensional and quasi two dimensional formamidinium tin iodide (2D-FASnI3) perovsite structures of the type (BA)2FAn-1SnnI3n+1 where n=1, 2, 5, and 10. The formation of two dimensional structures in the fabricated perovskite thin films were confirmed using low-angle X-ray diffractograms, grazing incidence wide angle X-ray scattering, SEM, absorption, photoluminescence (PL) measurements. The absorption and PL spectra of n=1, and 2 thin film samples show sharp excitonic peaks due to quantum confinement effects. The absorption and PL spectra of n=5 and n=10 samples do not show any quantum confinements effects. Further, by fitting the absorption band edges of all the samples it is found that as the quantum well thickness increases from n=1 to n=10 both the bandgap and exciton binding enegries become smaller. The PL decay measurements show that the lifetime of the emissive species becomes longer as the thickness of quantum well increases. The decreased binding energy and increased lifetime of sample indicate that free carrier nature of the quantum wells enhances as the quantum well thickness increases. Ultrfast transient absorption spectroscopic measurments were carried out on these quantum wells samples to further understand the nature of the samples and roles of exciton and free carriers in their optical properties. The TA spectra of n=1 and 2 samples resemble that of quantum wells with excitonic nature whereas n=5 and n=10 resemble that of a 3D FASnI3. Thus this thesis further discusses the roles of excitons and free carriers and the mechanisms of recombination pathways of these quantum well samples.
摘要 i
Abstract iii
致謝 v
Table of Content vi
List of Figures ix
List of Tables xiii
Chapter 1 Introduction 1
Chapter 2 Literature Survey 3
2-1 Perovskite Solar Cell 3
2-1-1 Development of Perovskite Solar Cell 4
2-1-2 The Two-Dimensional Perovskite 12
2-1-3 The Advantage and Disadvantage of Perovskites 15
2-2 Motivation 17
Chapter 3 Experimental Method and Principle 19
3-2 Time-Resolved Femtosecond Transient Absorption Spectroscopy 22
3-2-1 Pump-Probe Method 22
3-2-2 Experimental system 25
3-2-2-1 Femtosecond Laser System 25
3-2-2-2 Optical Parameter Amplifier 27
3-2-3 The Transient Absorption System Set up 29
3-3 Time-resolved Fluorescence Spectroscopy 30
3-3-1 Time-correlated Single Photon Counting [1] 31
3-3-1-1 Principle 31
3-3-1-2 Instrument 33
Chapter 4 Transient Absorption study of Tin Perovskite Quantum Well 40
4-1 Introduction 40
4-2 Experimental Process 41
4-2-1 Sample Preparation 41
4-2-1-1 UV-visible Absorption Spectra 42
4-2-1-2 Fluorescence Spectra 42
4-2-1-3 The Measurement of Time-resolved Fluorescence Spectroscopy 43
4-2-1-4 The Morphology Measurement 43
4-3 Results and Dicussion 44
4-3-1 The Morphology Characterization 44
4-3-2-1 State-Steady Measurement 47
4-3-2-3 Time-resolved Spectroscopy 50
4-3-2-3 Transient Absorption Spectroscopy 52
4-4 Conclusion 58

1.O'Regan, B.; Grätzel, M., A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737-740.
2.Im, J.-H.; Lee, C.-R.; Lee, J.-W.; Park, S.-W.; Park, N.-G., 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 2011, 3, 4088-4093.
3.Chen, Y.; Zhang, L.; Zhang, Y.; Gao, H.; Yan, H., Large-area perovskite solar cells–a review of recent progress and issues. RSC Advances 2018, 8, 10489-10508.
4.Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society 2009, 131, 6050-6051.
5.Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J. E., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific reports 2012, 2, 591.
6.Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J., Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 2012, 338, 643-647.
7.Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I., Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano letters 2013, 13, 1764-1769.
8.Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316.
9.Liu, M.; Johnston, M. B.; Snaith, H. J., Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501, 395.
10.Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T.-b.; Duan, H.-S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y., Interface engineering of highly efficient perovskite solar cells. Science 2014, 345, 542-546.
11.Zhou, Y.; Yang, M.; Wu, W.; Vasiliev, A. L.; Zhu, K.; Padture, N. P., Room-temperature crystallization of hybrid-perovskite thin films via solvent–solvent extraction for high-performance solar cells. Journal of Materials Chemistry A 2015, 3, 8178-8184.
12.Ahn, N.; Son, D.-Y.; Jang, I.-H.; Kang, S. M.; Choi, M.; Park, N.-G., Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead (II) iodide. Journal of the American Chemical Society 2015, 137, 8696-8699.
13.Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I., High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 2015, 348, 1234-1237.
14.Saliba, M.; Matsui, T.; Domanski, K.; Seo, J.-Y.; Ummadisingu, A.; Zakeeruddin, S. M.; Correa-Baena, J.-P.; Tress, W. R.; Abate, A.; Hagfeldt, A., Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 2016, 354, 206-209.
15.Correa-Baena, J.-P.; Abate, A.; Saliba, M.; Tress, W.; Jesper Jacobsson, T.; Grätzel, M.; Hagfeldt, A., The rapid evolution of highly efficient perovskite solar cells. Energy & Environmental Science 2017, 10, 710-727.
16.Jiang, Q.; Zhao, Y.; Zhang, X.; Yang, X.; Chen, Y.; Chu, Z.; Ye, Q.; Li, X.; Yin, Z.; You, J., Surface passivation of perovskite film for efficient solar cells. Nature Photonics 2019, 13, 460.
17.Huang, J.; Xiang, S.; Yu, J.; Li, C.-Z., Highly efficient prismatic perovskite solar cells. Energy & Environmental Science 2019, 12, 929-937.
18.Yusoff, A. R. b. M.; Nazeeruddin, M. K., Low-Dimensional Perovskites: From Synthesis to Stability in Perovskite Solar Cells. Advanced Energy Materials 2018, 8, 1702073.
19.Saliba, M.; Matsui, T.; Seo, J.-Y.; Domanski, K.; Correa-Baena, J.-P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.; Hagfeldt, A.; Grätzel, M., Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy & Environmental Science 2016, 9, 1989-1997.
20.Eperon, G. E.; Leijtens, T.; Bush, K. A.; Prasanna, R.; Green, T.; Wang, J. T.-W.; McMeekin, D. P.; Volonakis, G.; Milot, R. L.; May, R.; Palmstrom, A.; Slotcavage, D. J.; Belisle, R. A.; Patel, J. B.; Parrott, E. S.; Sutton, R. J.; Ma, W.; Moghadam, F.; Conings, B.; Babayigit, A.; Boyen, H.-G.; Bent, S.; Giustino, F.; Herz, L. M.; Johnston, M. B.; McGehee, M. D.; Snaith, H. J., Perovskite-perovskite tandem photovoltaics with optimized band gaps. Science 2016, 354, 861-865.
21.Sanehira, E. M.; Marshall, A. R.; Christians, J. A.; Harvey, S. P.; Ciesielski, P. N.; Wheeler, L. M.; Schulz, P.; Lin, L. Y.; Beard, M. C.; Luther, J. M., Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells. Science Advances 2017, 3, eaao4204.
22.Zhao, Q.; Hazarika, A.; Chen, X.; Harvey, S. P.; Larson, B. W.; Teeter, G. R.; Liu, J.; Song, T.; Xiao, C.; Shaw, L.; Zhang, M.; Li, G.; Beard, M. C.; Luther, J. M., High efficiency perovskite quantum dot solar cells with charge separating heterostructure. Nature Communications 2019, 10, 2842.
23.Li, Z.; Yang, M.; Park, J.-S.; Wei, S.-H.; Berry, J. J.; Zhu, K., Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys. Chemistry of Materials 2016, 28, 284-292.
24.Travis, W.; Glover, E. N. K.; Bronstein, H.; Scanlon, D. O.; Palgrave, R. G., On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system. Chemical Science 2016, 7, 4548-4556.
25.Zheng, X.; Chen, B.; Dai, J.; Fang, Y.; Bai, Y.; Lin, Y.; Wei, H.; Zeng, Xiao C.; Huang, J., Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nature Energy 2017, 2, 17102.
26.Zhang, F.; Bi, D.; Pellet, N.; Xiao, C.; Li, Z.; Berry, J. J.; Zakeeruddin, S. M.; Zhu, K.; Grätzel, M., Suppressing defects through the synergistic effect of a Lewis base and a Lewis acid for highly efficient and stable perovskite solar cells. Energy & Environmental Science 2018, 11, 3480-3490.
27.Zhang, F.; Shi, W.; Luo, J.; Pellet, N.; Yi, C.; Li, X.; Zhao, X.; Dennis, T. J. S.; Li, X.; Wang, S.; Xiao, Y.; Zakeeruddin, S. M.; Bi, D.; Grätzel, M., Isomer-Pure Bis-PCBM-Assisted Crystal Engineering of Perovskite Solar Cells Showing Excellent Efficiency and Stability. Advanced materials (Deerfield Beach, Fla.) 2017, 29.
28.Zhao, H.; Wang, S.; Sun, M.; Zhang, F.; Li, X.; Xiao, Y., Enhanced stability and optoelectronic properties of MAPbI3 films by a cationic surface-active agent for perovskite solar cells. Journal of Materials Chemistry A 2018, 6, 10825-10834.
29.Christians, J. A.; Schulz, P.; Tinkham, J. S.; Schloemer, T. H.; Harvey, S. P.; Tremolet de Villers, B. J.; Sellinger, A.; Berry, J. J.; Luther, J. M., Tailored interfaces of unencapsulated perovskite solar cells for >1,000 hour operational stability. Nature Energy 2018, 3, 68-74.
30.Liu, X.; Zhang, F.; Liu, Z.; Xiao, Y.; Wang, S.; Li, X., Dopant-free and low-cost molecular “bee” hole-transporting materials for efficient and stable perovskite solar cells. Journal of Materials Chemistry C 2017, 5, 11429-11435.
31.Bai, Y.; Dong, Q.; Shao, Y.; Deng, Y.; Wang, Q.; Shen, L.; Wang, D.; Wei, W.; Huang, J., Enhancing stability and efficiency of perovskite solar cells with crosslinkable silane-functionalized and doped fullerene. Nature Communications 2016, 7, 12806.
32.Zheng, X.; Troughton, J.; Gasparini, N.; Lin, Y.; Wei, M.; Hou, Y.; Liu, J.; Song, K.; Chen, Z.; Yang, C.; Turedi, B.; Alsalloum, A. Y.; Pan, J.; Chen, J.; Zhumekenov, A. A.; Anthopoulos, T. D.; Han, Y.; Baran, D.; Mohammed, O. F.; Sargent, E. H.; Bakr, O. M., Quantum Dots Supply Bulk- and Surface-Passivation Agents for Efficient and Stable Perovskite Solar Cells. Joule 2019, 3, 1963-1976.
33.Bella, F.; Griffini, G.; Correa-Baena, J. P.; Saracco, G.; Grätzel, M.; Hagfeldt, A.; Turri, S.; Gerbaldi, C., Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers. Science 2016, 354, 203-206.
34.Jiang, Y.; Qiu, L.; Juarez-Perez, E. J.; Ono, L. K.; Hu, Z.; Liu, Z.; Wu, Z.; Meng, L.; Wang, Q.; Qi, Y., Reduction of lead leakage from damaged lead halide perovskite solar modules using self-healing polymer-based encapsulation. Nature Energy 2019, 4, 585-593.
35.Zhang, F.; Kim, D. H.; Zhu, K., 3D/2D multidimensional perovskites: Balance of high performance and stability for perovskite solar cells. Current Opinion in Electrochemistry 2018, 11, 105-113.
36.Etgar, L., The merit of perovskite's dimensionality; can this replace the 3D halide perovskite? Energy & Environmental Science 2018, 11, 234-242.
37.Saparov, B.; Mitzi, D. B., Organic–Inorganic Perovskites: Structural Versatility for Functional Materials Design. Chemical Reviews 2016, 116, 4558-4596.
38.Li, Z.; Guo, J.; Li, Z.; Han, W.; Ren, G.; Liu, C.; Shen, L.; Guo, W., Incorporating self-assembled silane-crosslinked carbon dots into perovskite solar cells to improve efficiency and stability. Journal of Materials Chemistry A 2020, 8, 5629-5637.
39.Mitzi, D. B.; Feild, C. A.; Harrison, W. T. A.; Guloy, A. M., Conducting tin halides with a layered organic-based perovskite structure. Nature 1994, 369, 467-469.
40.Hattori, T.; Taira, T.; Era, M.; Tsutsui, T.; Saito, S., Highly efficient electroluminescence from a heterostructure device combined with emissive layered-perovskite and an electron-transporting organic compound. Chemical Physics Letters 1996, 254, 103-108.
41.Pradeesh, K.; Rao Kotla, N.; Ahmad, S.; Dwivedi, V. K.; Prakash, G. V., Naturally Self-Assembled Nanosystems and Their Templated Structures for Photonic Applications. Journal of Nanoparticles 2013, 2013, 531871.
42.Weidman, M. C.; Seitz, M.; Stranks, S. D.; Tisdale, W. A., Highly Tunable Colloidal Perovskite Nanoplatelets through Variable Cation, Metal, and Halide Composition. ACS Nano 2016, 10, 7830-7839.
43.Grancini, G.; Nazeeruddin, M. K., Dimensional tailoring of hybrid perovskites for photovoltaics. Nature Reviews Materials 2019, 4, 4-22.
44.Smith, I. C.; Hoke, E. T.; Solis-Ibarra, D.; McGehee, M. D.; Karunadasa, H. I., A Layered Hybrid Perovskite Solar-Cell Absorber with Enhanced Moisture Stability. Angewandte Chemie International Edition 2014, 53, 11232-11235.
45.Luo, T.; Zhang, Y.; Xu, Z.; Niu, T.; Wen, J.; Lu, J.; Jin, S.; Zhao, K., Compositional Control in 2D Perovskites with Alternating Cations in the Interlayer Space for Photovoltaics with Efficiency over 18%. Advanced Materials 2019, 31.
46.Zhang, F.; Lu, H.; Tong, J.; Berry, J. J.; Beard, M. C.; Zhu, K., Advances in two-dimensional organic–inorganic hybrid perovskites. Energy & Environmental Science 2020, 13, 1154-1186.
47.Brittman, S.; Adhyaksa, G. W. P.; Garnett, E. C., The expanding world of hybrid perovskites: materials properties and emerging applications. MRS Communications 2015, 5, 7-26.
48.Vale, B. R. C.; Socie, E.; Burgos-Caminal, A.; Bettini, J.; Schiavon, M. A.; Moser, J.-E., Exciton, Biexciton, and Hot Exciton Dynamics in CsPbBr3 Colloidal Nanoplatelets. The Journal of Physical Chemistry Letters 2020, 11, 387-394.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top