跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/20 14:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:侯鎮鈺
研究生(外文):Hou, Chen-Yu
論文名稱:探討監測準確度、成就目標、線上平台解題行為指標與問題解決策略對於化學結構化問題解決表現之影響
論文名稱(外文):Exploring the effects of calibration accuracy, achievement goal orientations, quiz tracking variables, and problem-solving strategies on well-structured problem-solving performance in chemistry
指導教授:王嘉瑜
指導教授(外文):Wang, Chia-Yu
口試委員:陳素芬孫之元
口試委員(外文):Chen, Su-FenSun, Chih-Yuan
口試日期:2020-09-28
學位類別:碩士
校院名稱:國立交通大學
系所名稱:教育研究所
學門:教育學門
學類:綜合教育學類
論文種類:學術論文
論文出版年:2020
畢業學年度:109
語文別:中文
論文頁數:101
中文關鍵詞:成就目標監測準確度化學線上解題行為指標結構化問題解決
外文關鍵詞:achievement goal orientationscalibration accuracychemistryquiz tracking variableswell-structured problem-solving
相關次數:
  • 被引用被引用:0
  • 點閱點閱:204
  • 評分評分:
  • 下載下載:35
  • 收藏至我的研究室書目清單書目收藏:0
本研究欲以學習分析的角度切入,分析學習者於化學自主練習解題平台的學習歷程與成果,並納入成就目標和監測準確度等指標,探討哪些指標、學習行為或組合類型可能預測學習成效。本研究採質量混合設計,以87位大學生或碩士生為對象,進行多題化學結構化問題解決,任務中紀錄學習平台和手寫板的解題歷程,並請學習者回溯說明解題思考過程。研究方法首先以相關性分析探討可預測化學解題表現的指標。其次以監測準確度、行為指標和解題表現進行群集分析,探索不同學習類型,並比較各類型學習者的成就目標,最後再以訪談逐字稿進行問題解決策略編碼,比較不同類型學習者使用的問題解決策略是否不同。
相關性分析結果顯示,監測準確度及累計提交次數可作為預測化學解題表現的指標,另配合質性分析結果則顯示,學習者的成就目標未必與化學問題解決表現直接相關,但會影響問題解決歷程。此外,以監測準確度、解題行為指標和化學解題表現進行群集分析可分出三個群體,配合各類型成就目標的分析,可指認出:「高動機高效率」、「高動機低效率」和「低動機心力精省」三種學習類型。其中高動機高效率組特性反映在高動機、監測準、提交次數少和表現佳,高動機低效率組雖動機高,投入解題時間和累計提交次數最多,但監測最不準確,表現最差。低動機心力精省組則動機最低,呼應解題總時間花費最少的特徵,但由於監測準確度次高,合併結果問題解決表現次高。質性分析結果顯示,不同學習類型持有的成就目標高、低反映在其付出心力運用策略解決問題的歷程;當解決問題時缺乏先備概念,則可能增加認知負荷,使得負向策略變多,影響問題解決表現。
本研究的學習分析結果獲得質性證據的支持,研究也另指出納入成就目標和監測準確度除了能辨識不同學習者類型,也有助於解釋問題解決的歷程與成果之關聯,為本研究主要貢獻。
This study employed a mixed-method approach, and applied learning analytics to analyze learners’ problem-solving process and performance of solving well-structured chemistry problems in a self-paced, online environment. Achievement goal orientations, calibration accuracy, quiz tracking variables, and problem-solving strategies were included as indicators for exploring which or what combination of these factors may predict problem-solving outcomes.
Participants included 87 undergraduate or graduate students who were taking or who had taken general chemistry. They solved 12 chemistry problem at their own pace, and the drawing and note-taking process was screen-recorded. The videos of screen-recording were then used as stimuli for retrospective self-reporting. Pearson correlations were first obtained for calibration accuracy, achievement goal orientations, quiz tracking indicators, and problem-solving performance. We then conducted cluster analyses, using calibration accuracy, quiz tracking indicators and problem-solving performance, to explore different patterns of learner characteristics. Differences in achievement goal orientations were further examined for the revealed patterns. Next, use of problem-solving strategies was compared across learners’ patterns.
Our findings indicated that calibration accuracy and total numbers of quiz attempts were significantly correlated with problem-solving performance. Although achievement goal orientations were not correlated with problem-solving performance, they affect outcomes through the problem-solving process. In addition, the results of cluster analysis revealed three learner patterns: "High motivation and high efficiency," "High motivation but low efficiency" and "Low motivation and effort-reducing." The high motivation and high efficiency group was characterized by their high motivation, accurate monitoring, fewer number of quiz attempts and good performance. Although the high motivation and low efficiency group had high motivation as well and spent the longest time and made the most frequent quiz attempts during the task, their calibration was the least accurate and resulted in the worst performance. The low motivation and effort-reducing group had the lowest motivation, which might explain why they spent the least amount of time on problem-solving. Because they maintained fairly good calibration accuracy, their problem-solving performance was ranked second. Our findings of the qualitative analyses indicated that achievement goal orientations influenced learners’ efforts in their use of problem-solving strategies, in turn resulting in different levels of performance. Nevertheless, a lack of prior knowledge may increase cognitive load and lead to an increase in negative strategies, resulting in a decrease in problem-solving performance.
Our results of learning analytics are supported by our qualitative evidence. Our findings also showed that the inclusion of achievement goal orientations and calibration accuracy helped identify patterns of learners’ characteristics and can further explain the relationships between the problem-solving process and performance.
中文摘要 i
英文摘要 iii
誌 謝 v
表目錄 ix
圖目錄 x
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 3
第三節 研究問題 3
第四節 名詞釋義 3
第二章 文獻探討 6
第一節 監測準確度 6
一、 監測準確度的定義 6
二、 監測準確度的測量方法 7
第二節 成就目標 10
一、 成就目標的定義 10
二、 成就目標的測量方法 14
第三節 行為指標 15
一、 行為指標 15
二、 行為指標的分析方法 16
第四節 問題解決 17
一、 問題解決的定義 17
二、 問題解決策略的測量方法 18
第五節 影響問題解決表現之因素 19
一、監測準確度與問題解決表現之相關研究 20
二、成就目標與問題解決表現之相關研究 20
三、行為指標與問題解決表現之相關研究 23
四、問題解決策略與問題解決表現之相關研究 26
第三章 研究方法 28
第一節 研究對象 28
第二節 研究設計 28
第三節 研究工具 30
一、成就目標問卷 30
二、問題解決任務 31
(一)化學解題表現 34
(二)監測準確度 35
(三)行為指標 36
(四)問題解決策略編碼 36
第四節 研究任務實施流程 41
第五節 資料分析 43
第四章 研究結果與分析 45
第一節 監測準確度、成就目標、行為指標與化學解題表現的關係 45
第二節 探討不同成就目標、監測準確度、解題行為指標與化學解題表現的組合類型 48
第三節 不同組合類型學習者所使用的問題解決策略之分析 50
一、高動機高效率組 58
二、高動機低效率組 62
三、低動機心力精省組 67
第五章 結論與建議 72
第一節 結論 72
一、監測準確度與化學問題解決表現呈顯著正向關聯,但累計提交次數則與化學解題表現呈負向關聯,而成就目標則與問題解決表現無相關性 72
二、成就目標、問題解決歷程行為、監測準確度和化學解題表現的群集分析結果呈現:高動機高效率、高動機低效率組和低動機心力精省組等三種學習者類型 73
三、不同類型之學習者,於問題解決過程中使用的問題解決策略之頻率和特徵不同,顯示學習者持有的成就目標和問題解決過程中的監測品質會影響化學解題歷程,進而影響問題解決表現 73
四、小結 75
第二節 研究限制 76
第三節 建議 76
一、對未來研究的建議 76
二、對教學上的啟示與應用 77
三、對線上平台系統功能的建議 78
參考文獻 79
附錄一 成就目標問卷 85
附錄二 練習任務試題 87
附錄三 正式任務試題 89
附錄四 問題解決策略編碼表 98
一、中文部分
王石番(1989) 。傳播內容分析法-理論與實證。臺北市: 幼獅文化。
吳中勤(2014)。以多群組結構方程模式檢驗成就目標理論模式的測量恆等性。教育科學研究期刊,59(3),59-95頁。
陈启山(2007)。元理解监控的精确性及其延迟关键词效应。心理科学进展, 15(02), 295-300頁。
程炳林(2003)。四向度目標導向模式之研究。 師大學報,48 (1), 15-40 頁。
彭燕鈴(2016)。 探討在弱結構問題解決情境中,工作記憶廣度、後設認知能力和問題解決表現之關聯(未出版之碩士論文)。國立交通大學,新竹市。
贾宁、白学军、沈德立(2006)。学习判断准确性的研究方法。心理发展与教育, 22(3),103-109頁。
二、英文部分
Ames, C. (1984). Competitive, cooperative, and individualistic goal structure: A cognitive- motivational analysis. In C. Ames & R. Ames (Eds.), Research on motivation in education (Vol. 3, pp. 177-207). New York: Academic.
Ames, C. (1992). Classrooms: Goals, structures, and student motivation. Journal of Educational Psychology, 84, 261-271.
Aşık, G., & Erktin, E. (2019). Metacognitive experiences: Mediating the relationship between metacognitive knowledge and problem solving. Egitim ve Bilim, 44(197), 85-103.
Bannert, M., Reimann, P., & Sonnenberg, C. (2014). Process mining techniques for analysing patterns and strategies in students’ self-regulated learning. Metacognition and Learning, 9(2), 161-185.
Bartels, J. M., & Magun-Jackson, S. (2009). Approach–avoidance motivation and metacognitive self-regulation: The role of need for achievement and fear of failure. Learning and Individual Differences, 19(4), 459-463.
Besken, M., & Mulligan, N. W. (2013). Easily perceived, easily remembered? Perceptual interference produces a double dissociation between metamemory and memory performance. Memory & Cognition, 41(6), 897-903.
Black, E. W., Dawson, K., & Priem, J. (2008). Data for free: Using LMS activity logs to measure community in online courses. The Internet and Higher Education, 11(2), 65-70.
Bogard, T., Liu, M., & Chiang, Y. H. V. (2013). Thresholds of knowledge development in complex problem solving: A multiple-case study of advanced learners’ cognitive processes. Educational Technology Research and Development, 61(3), 465-503.
Campbell, J. P., DeBlois, P. B., & Oblinger, D. G. (2007). Academic analytics: A new tool for a new era. EDUCAUSE Review, 42(4), 40-57.
Cao, L. (2012). Examining ‘active’procrastination from a self-regulated learning perspective. Educational Psychology, 32(4), 515-545.
Cerezo, R., Sánchez-Santillán, M., Paule-Ruiz, M. P., & Núñez, J. C. (2016). Students' LMS interaction patterns and their relationship with achievement: A case study in higher education. Computers & Education, 96, 42-54.
Dawson, S., Gašević, D., Siemens, G., & Joksimovic, S. (2014, March). Current state and future trends: A citation network analysis of the learning analytics field. Paper presented at the Fourth International Conference on Learning Analytics And Knowledge. Indianapolis, USA.
De Barba, P. G., Kennedy, G. E., & Ainley, M. D. (2016). The role of students' motivation and participation in predicting performance in a MOOC. Journal of Computer Assisted Learning, 32(3), 218-231.
Dietz-Uhler, B., & Hurn, J. E. (2013). Using learning analytics to predict (and improve) student success: A faculty perspective. Journal of Interactive Online Learning, 12(1), 17-26.
Dunlosky, J., Hertzog, C., Kennedy, M. R. T., & Thiede, K. W. (2005). The self-monitoring approach for effective learning. Cognitive Technology, 10, 4–11.
Dweck, C. S. (1986). Motivational processes affecting learning. American Psychologist, 41, 1040-1048.
Elliot, A. J. (1999). Approach and avoidance motivation and achievement goals. Educational Psychologist, 34, 169-189.
Elliot, A. J., & Harackiewicz, J. M. (1996). Approach and avoidance achievement goals and intrinsic motivation: A mediational analysis. Journal of Personality and Social Psychology, 70(3),461-475.
Elliot, A. J., & McGregor, H. A. (2001). A 2×2 achievement goal framework. Journal of Personality and Social Psychology, 80(3), 501-519.
Elliot, A. J., McGregor, H. A., & Gable, S. (1999). Achievement goals, study strategies, and exam performance: A mediational analysis. Journal of Educational Psychology, 91(3), 549-563.
Elliot, A. J., & Murayama, K. (2008). On the measurement of achievement goals: Critique, illustration, and application. Journal of Educational Psychology, 100(3), 613-628.
Ellis, D., & Zimmerman, B. J. (2001). Enhancing self-monitoring during self-regulated learning of speech. In H. J. Hartman (Ed.), Metacognition in learning and instruction (pp. 205–228). Dordrecht,The Netherlands: Kluwer.
Fenollar, P., Román, S., & Cuestas, P. J. (2007). University students' academic performance: An integrative conceptual framework and empirical analysis. British Journal of Educational Psychology, 77(4), 873-891.
Fleming, S. M., Massoni, S., Gajdos, T., & Vergnaud, J. C. (2016). Metacognition about the past and future: Quantifying common and distinct influences on prospective and retrospective judgments of self-performance. Neuroscience of Consciousness, 2016(1),1-12.
Gagne′ E.D.(1985). The cognitive psychology of school learning. Boston:Lettle, Brown and Company.
Gerbner, G. (1969). Toward" cultural indicators": The analysis of mass mediated public message systems. AV Communication Review, 17(2),137-148.
Geurten, M., & Lemaire, P. (2019). Metacognition for strategy selection during arithmetic problem-solving in young and older adults. Aging, Neuropsychology, and Cognition, 26(3), 424-446.
Graziano, M., Parra, L. C., & Sigman, M. (2015). Neural correlates of perceived confidence in a partial report paradigm. Journal of Cognitive Neuroscience, 27(6), 1090-1103.
Hadwin, A. F., Nesbit, J. C., Jamieson-Noel, D., Code, J., & Winne, P. H. (2007). Examining trace data to explore self-regulated learning. Metacognition and Learning, 2(2), 107-124.
Hawker, M. J., Dysleski, L., & Rickey, D. (2016). Investigating general chemistry students’ metacognitive monitoring of their exam performance by measuring postdiction accuracies over time. Journal of Chemical Education, 93(5), 832-840.
Heo, D., Anwar, S., & Menekse, M. (2018). The relationship between engineering students’ achievement goals, reflection behaviors, and learning outcomes. International Journal of Engineering Education, 34(5), 1634-1643.
Hershkovitz, A., & Nachmias, R. (2009). Learning about online learning processes and students' motivation through web usage mining. Interdisciplinary Journal of E-Learning and Learning Objects, 5(1), 197-214.
Howell, A. J., & Watson, D. C. (2007). Procrastination: Associations with achievement goal orientation and learning strategies. Personality and Individual Differences, 43(1), 167-178.
Jonassen, D. H. (1997). Instructional design models for well-structured and III-structured problem-solving learning outcomes. Educational Technology Research and Development, 45(1), 65-94.
Kahney, H. (1986). Problem solving - A cognitive approach. Milton Keynes:Open University Press.
Kopcha, T. J., & Sullivan, H. (2008). Learner preferences and prior knowledge in learner-controlled computer-based instruction. Educational Technology Research and Development, 56(3), 265-286.
Li, L. Y., & Tsai, C. C. (2017). Accessing online learning material: Quantitative behavior patterns and their effects on motivation and learning performance. Computers & Education, 114, 286-297.
Luo, W., Aye, K. M., Hogan, D., Kaur, B., & Chan, M. C. Y. (2013). Parenting behaviors and learning of Singapore students: The mediational role of achievement goals. Motivation and Emotion, 37(2), 274-285.
Maehr, M. L. (1984). Meaning and motivation: Toward a theory of personal investment. In R. Ames & C. Ames (Eds.), Research on motivation in education (Vol. 1, pp. 39-73). San Diego, CA: Academic Press.
Maehr, M. L., & Midgley, C. (1991). Enhancing student motivation: A school-wide approach. Educational Psychologist, 26, 399-427.
Maehr, M. L., & Zusho, A. (2009). Achievement goal theory: The past, present, and future. In K. R.Wentzel & A. Wigfield (Eds.), Handbook of motivation at school (pp. 77-104). New York:Routledge.
Mathabathe, K. C., & Potgieter, M. (2014). Metacognitive monitoring and learning gain in foundation chemistry. Chemistry Education Research and Practice, 15(1), 94-104.
Mayer, E. R. (1992). Thinking, Problem Solving, Cogniton. NewYork:Freeman.
Meijer, J., Veenman, M. V., & van Hout-Wolters, B. H. (2006). Metacognitive activities in text-studying and problem-solving: Development of a taxonomy. Educational Research and Evaluation, 12(3), 209-237.
Midgley, C., Kaplan, A., & Middleton, M. (2001). Performance-approach goals: Good for what, for whom, under what circumstances, and at what cost? Journal of Educational Psychology, 93, 77-86.
Moos, D., & Azevedo, R. (2006). The role of goal structure in undergraduates’ use of self-regulatory variables in two hypermedia learning tasks. Journal of Educational Multimedia and Hypermedia, 15(1), 49-86.
Nelson, T. O. (1996). Gamma is a measure of the accuracy of predicting performance on one item relative to another item, not of the absolute performance on an individual item comments on Schraw (1995). Applied Cognitive Psychology, 10(3), 257-260.
Nelson, T. O., & Narens, L. (1990). Metamemory: A theoretical framework and new findings. In G. H. Bower(Ed.), The psychology of learning and motivation (Vol. 26, pp. 125–141). New York: Academic Press.
Nicholls, J. G. (1984). Achievement motivation: Conceptions of ability, subjective experience, task choice, and performance. Psychological Review, 91, 328-346.
Ozarslan, Y., & Ozan, O. (2016). Self‐assessment quiz taking behaviour analysis in an online course. European Journal of Open, Distance and E-Learning, 19(2), 15-31.
Phan, H. P. (2009). Exploring students’ reflective thinking practice, deep processing strategies, effort, and achievement goal orientations. Educational Psychology, 29(3), 297-313.
Pieschl, S., Stahl, E., & Bromme, R. (2013). Adaptation to context as core component of self-regulated learning: The Example of Complexity and Epistemic Beliefs. In International handbook of metacognition and learning technologies (pp. 53-65). Springer, New York, NY.
Pintrich, P. R. (2000). The role of goal orientation in self-regulated learning. In M., Boekaerts & P. R., Pintrich (Eds.), Handbook of self-regulation (pp.13-39). San Diego, CA: Academic Press.
Pintrich, P. R., & Schunk, D. H. (1996). Motivation in education: Theory, research, and application. Englewood Cliffs, NJ: Prentice Hall.
Rhodes, M. G., & Castel, A. D. (2008). Memory predictions are influenced by perceptual information: evidence for metacognitive illusions. Journal of Experimental Psychology: General, 137(4), 615-625.
Schraw, G. (2009). A conceptual analysis of five measures of metacognitive monitoring. Metacognition and Learning, 4(1), 33-45.
She, H. C., Cheng, M. T., Li, T. W., Wang, C. Y., Chiu, H. T., Lee, P. Z., Chou,W.C.,& Chuang, M. H. (2012). Web-based undergraduate chemistry problem-solving: The interplay of task performance, domain knowledge and web-searching strategies. Computers & Education, 59(2), 750-761.
Siedlecka, M., Paulewicz, B., & Wierzchoń, M. (2016). But I was so sure! Metacognitive judgments are less accurate given prospectively than retrospectively. Frontiers in Psychology, 7, 218.
Siemens, G. (2010, July ). About: 1st international conference on learning analytics and knowledge. (Retrieved from) https://tekri.athabascau.ca/analytics/about
Tan, T. Y., Jain, M., Obaid, T., & Nesbit, J. C. (2019). What can completion time of quizzes tell us about students’ motivations and learning strategies?. Journal of Computing in Higher Education, 1-17.
Thiede, K. W., & Dunlosky, J. (1999). Toward a general model of self-regulated study: An analysis of selection of items for study and self-paced study time. Journal of Experimental Psychology: Learning, Memory, and Cognition, 25(4), 1024-1037.
Thiede, K.W., Anderson M.C.M., & Therriault, D. (2003). Accuracy of Metacognitive Monitoring Affects Learning of Texts. Journal of Educational Psychology, 95(1),66-73.
Tsaparlis, G. (2005). Non-algorithmic quantitative problem solving in university physical chemistry: A correlationstudy of the role of selective cognitive factors. Research in Science and Technological Education, 23, 125 –148.
Veenman, M. V., & van Cleef, D. (2019). Measuring metacognitive skills for mathematics: students’ self-reports versus on-line assessment methods. ZDM, 51(4), 691-701.
Wang, C. Y. (2015). Exploring general versus task-specific assessments of metacognition in university chemistry students: A multitrait–multimethod analysis. Research in Science Education, 45(4), 555-579.
Weiner, B. (1990). History of motivational research in education. Journal of Educational Psychology, 82, 616-622.
Winne, P. H., & Hadwin, A. F. (1998). Studying as self-regulated learning. In D. J. Hacker, J. Dunlosky, & A. C.Graesser (Eds.), Metacognition in educational theory and practice (pp. 277–304). Hillsdale: Erlbaum.
Wolters, C. A. (2004). Advancing achievement goal theory: Using goal structures and goal orientations to predict students' motivation, cognition, and achievement. Journal of Educational Psychology, 96(2), 236-250.
You, J. W. (2016). Identifying significant indicators using LMS data to predict course achievement in online learning. The Internet and Higher Education, 29, 23-30.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top