|
[1] J. D. Croston, “Forecasting and stock control for intermittent demands,” Journal of the Operational Research Society, vol. 23, no. 3, pp. 289–303, 1972. [Online]. Available: https://doi.org/10.1057/jors.1972.50 [2] R. D. Snyder, J. K. Ord, and A. Beaumont, “Forecasting the intermittent demand for slowmoving inventories: A modelling approach,” International Journal of Forecasting, vol. 28, no. 2, pp. 485 – 496, 2012. [Online]. Available: http: //www.sciencedirect.com/science/article/pii/S0169207011000781 [3] S. Viswanathan, H. Widiarta, and R. Piplani, “Forecasting aggregate time series with inter mittent subaggregate components: Topdown versus bottomup forecasting,” Ima Journal of Management Mathematics IMA J MANAG MATH, vol. 19, pp. 275–287, 03 2007. [4] N. Kourentzes, “Intermittent demand forecasts with neural networks,” International Jour nal of Production Economics, vol. 143, pp. 198–206, 05 2013. [5] Y. Hong, J. Zhou, and M. Lanham, “Forecasting intermittent demand patterns with time series and machine learning methodologies,” 2018. [6] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning Representations by Back Propagating Errors. Cambridge, MA, USA: MIT Press, 1988, p. 696–699. [7] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. The MIT Press, 2016. [8] K. Cho, B. van Merriënboer, C. Gulcehre, F. Bougares, H. Schwenk, and Y. Bengio, “Learning phrase representations using rnn encoderdecoder for statistical machine trans lation,” 06 2014. [9] A. Syntetos and J. Boylan, “On the bias of intermittent demand estimates,” International Journal of Production Economics, vol. 71, pp. 457–466, 05 2001. [10] E. Ostertagova and O. Ostertag, “The simple exponential smoothing model,” 09 2011.
[11] R. Hyndman and G. Athanasopoulos, Forecasting: Principles and Practice, 2nd ed. Aus tralia: OTexts, 2018. [12] P. Zhang, E. Patuwo, and M. Hu, “Forecasting with artificial neural networks: The state of the art,” International Journal of Forecasting, vol. 14, pp. 35–62, 03 1998. [13] E. Brochu, V. Cora, and N. Freitas, “A tutorial on bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning,” CoRR, vol. abs/1012.2599, 12 2010. [14] M. Syntetos, J. Boylan, and J. Croston, “On the categorization of demand patterns,” Jour nal of the Operational Research Society, vol. 56, 05 2005. [15] Hendra, H. Napitupulu, H. Nasution, and J. Hidayati, “Portfolio effect on end user spare parts based on demand patterns,” IOP Conference Series: Materials Science and Engi neering, vol. 505, p. 012075, 07 2019. [16] F. Petropoulos, S. Makridakis, V. Assimakopoulos, and K. Nikolopoulos, “‘horses for courses ’in demand forecasting,” European Journal of Operational Research, vol. 237, p. 152–163, 08 2014. [17] R. J. Hyndman and A. B. Koehler, “Another look at measures of forecast accuracy,” International Journal of Forecasting, vol. 22, no. 4, pp. 679 – 688, 2006. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0169207006000239
|