跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/12 12:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:丁宏洋
研究生(外文):Ting, Hung-Yang
論文名稱:高品質氮化鋁模板應用於氮化物發光二極體光電特性之研究
論文名稱(外文):Investigation of Nitride-Based Light-Emitting Diodes With High quality AlN Template
指導教授:郭政煌
指導教授(外文):Kuo, Cheng-Huang
口試委員:許進恭賴韋志
口試委員(外文):Sheu, Jinn-KongLai, Wei-Chih
口試日期:2020-08-03
學位類別:碩士
校院名稱:國立交通大學
系所名稱:照明與能源光電研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:109
語文別:中文
論文頁數:80
中文關鍵詞:氮化鋁氮化物發光二極體
外文關鍵詞:AlN TemplateNitride-Based LED
相關次數:
  • 被引用被引用:2
  • 點閱點閱:228
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用高溫退火系統對物理氣象沉積製備的氮化鋁薄膜進行退火,在1650℃常壓下改變退火時間進行退火實驗,之後成長藍光發光二極體及紫外光發光二極體結構,接著利用黃光微影製程製作出藍光發光二極體及紫外光發光二極體,進行光電特性的分析並探討物理氣象沉積製備的氮化鋁薄膜在不同退火時間下對藍光發光二極體及紫外光發光二極體光電特性的影響。
由藍光發光二極體及紫外光發光二極體發光機制的差異及缺陷密度的影響可知,在發光層銦比例較高的藍光發光二極體會形成較深的局域態(localized states),使載子較不容易溢流(overflow),因此受缺陷密度影響較小,而紫外光發光二極體由於發光層銦比例很低使得局域態很少,造成載子容易受缺陷侷限導致內部量子效率下降,因此缺陷密度對其影響很大。由實驗結果可知,在氮化鋁薄膜退火2小時情況下的藍光發光二極體光輸出功率提升了10.93%,而紫外光發光二極體光輸出功率提升了76.97%,在發光層銦比例較低的紫外光發光二極體發光效率提升的效果確實較發光層銦比例高的藍光發光二極體明顯。
In this study, thermal annealing system is used to anneal the aluminum nitride(AlN) film prepared by physical vapor deposition(PVD) and the annealing temperature is 1650℃ under atmosphere. Subsequently, blue light-emitting(LED) device and ultraviolet(UV) LED device are fabricated using a photolithography process. The results are analyzed, including influences of PVD-AlN under various annealing times and photoelectric characteristics of blue LED and UV LED were prepared on various annealing times PVD-AlN template.
The emission mechanism of blue LED and UV LED was totally different. It’s well known that the blue LED with a higher proportion of indium in the active layer will form a deeper localized state, making the carriers less likely to overflow. Therefore, blue LED are less affected by the defect density. In contrast, UV LED with extremely lower proportion of indium in the active layer will form low localized state density. The carriers of UV LED can be easily trapped by dislocation. Therefore, UV LED are considerably influenced by defect density. The result was shown that the light output power of the blue and ultraviolet LED by using annealing the PVD-AlN for 2 hours were increased by 10.93% and 76.97%,respectively. The light output power improvement of ultraviolet LED with a lower proportion of indium in the active layer is more significant than that of blue LED with a higher proportion of indium in the active layer.
摘要 i
英文摘要(ABSTRACT) iii
誌謝 iv
目錄 v
表目錄 viii
圖目錄 x
第一章 序論 1
1.1前言 1
1.2研究動機與目的 3
第二章 實驗系統介紹 4
2.1實驗系統介紹 4
2.1.1高溫退火系統 4
2.1.2掃描式電子顯微鏡 4
2.1.3 X-ray繞射儀 4
2.1.4光激發螢光光譜(PL)量測系統 5
2.1.5電壓-電流特性量測系統 5
2.1.6積分球量測系統 5
2.1.7光強度(EL)量測系統 6
2.1.8二維光強度量測系統 6
2.1.9 Hot/Cold Factor量測系統 6
第三章 高品質氮化鋁模板應用於藍光發光二極體 7
3.1前言 7
3.2實驗規劃 7
3.3藍光發光二極體製程 7
3.4氮化鋁模板應用於藍光發光二極體之光電特性分析 10
3.4.1磊晶片光學顯微鏡量測分析 10
3.4.2磊晶片掃描式電子顯微鏡量測分析 11
3.4.3磊晶片X-ray繞射儀量測分析 11
3.4.4磊晶片光激發光(PL)頻譜量測分析 11
3.4.5晶粒於光學顯微鏡量測分析 12
3.4.6藍光發光二極體之電壓-電流及逆向偏壓-漏電流特性分析 12
3.4.7藍光發光二極體之光輸出功率-電流、正向光強度及二維光強度特性分析 13
3.4.8藍光發光二極體之外部量子效率及光電轉換效率特性分析 14
3.4.9藍光發光二極體之Hot/Cold Factor特性分析 16
3.4.10結論與分析 17
第四章高品質氮化鋁模板應用於紫外光發光二極體 19
4.1前言 19
4.2實驗規劃 19
4.3紫外光發光二極體製程 20
4.4氮化鋁模板應用於紫外光發光二極體之光電特性分析 21
4.4.1磊晶片光學顯微鏡量測分析 21
4.4.2磊晶片掃描式電子顯微鏡量測分析 22
4.4.3磊晶片X-ray繞射儀量測分析 22
4.4.4磊晶片光激發光(PL)頻譜量測分析 22
4.4.5晶粒於光學顯微鏡量測分析 23
4.4.6紫外光發光二極體之電壓-電流及逆向偏壓-漏電流特性分析 23
4.4.7紫外光發光二極體之光輸出功率-電流、正向光強度及二維光強度特性分析 24
4.4.8紫外光發光二極體之外部量子效率及光電轉換效率特性分析 25
4.4.9紫外光發光二極體之Hot/Cold Factor特性分析 27
4.4.10結論與分析 28
第五章 結論 30
第六章 未來工作 32
參考文獻 33
[1] Toru Takayama, Masaaki Yuri, Kunio Itoh, and James S. Harris, “Theoretical predictions of unstable two-phase regions in wurtzite group-III-nitride-based ternary and quaternary material systems using modified valence force field model”, Journal of Applied Physics 90, 2358 (2001)
[2] 郭浩中, 賴芳儀, 郭守義, LED原理與應用, 第二版, 五南圖書出版公司,pp.50-51 (2012)

[3] Hideki Hirayama, “Quaternary InAlGaN-based high-efficiency ultraviolet light-emitting diodes”, Journal of Applied Physics 97, 091101 (2005)

[4] Takashi Mukai, Motokazu Yamada and Shuji Nakamura, “Characteristics of InGaN-Based UV/Blue/Green/Amber/Red Light-Emitting Diodes”, The Japan Society of Applied Physics (1999)

[5] Shuji Nakamura , “The Roles of Structural Imperfections in InGaN-Based Blue Light-Emitting Diodes and Laser Diodes”, SCIENCE VOL 281 14 AUGUST (1998)

[6] Shuji Nakamura, “UV/Blue/Green InGaN-Based LEDs and Laser Diodes Grown on Epitaxially Laterally Overgrown GaN”, IEICE TRANSACTIONS on Electronics Vol.E83-C No.4 pp.529-535 (2000)

[7] Isamu Akasaki, “Key inventions in the history of nitride-based blue LED and LD”, Journal of Crystal Growth, Volume 310, Issue 10, 1 May (2008)

[8] Hideki Hirayama, Sachie Fujikawa, Jun Norimatsu, Takayoshi Takano, Kenji Tsubaki, and Norihiko Kamata, “Fabrication of a low threading dislocation density ELO‐AlN template for application to deep‐UV LEDs”, Phys. Status Solidi (c), 6: S356-S359 (2009)

[9] Joocheol Jeong, Junghwan Son, Jiwon Jeong, Joo Jin, “Growth and fabrication of backside illuminated AlGaN based solar-blind ultraviolet photodetectors on high quality AlN”, Materials to Applications (2018)

[10] 葉怡勻, “利用退火製程於物理氣象沉積法製備之氮化鋁薄膜開發高品質氮化鋁模板之研究”, 國立交通大學照明與能源光電研究所,碩士論文 (2019)

[11] A. David and M. J. Grundmann, “Droop in InGaN light-emitting diodes: A differential carrier lifetime analysis”, Appl. Phys. Lett. 96, 103504 (2010)

[12] Min-Ho Kim , Martin F. Schubert, Qi Dai, Jong Kyu Kim, and E. Fred Schubert, Joachim Piprek, Yongjo Park, “Origin of efficiency droop in GaN-based lightemitting diodes”, Appl. Phys. Lett. 91, 183507 (2007)

[13] Liann-Be Chang, Mu-Jen Lai, Ray-Ming Lin, and Chou-Hsiung Huang, “Effect of Electron Leakage on Efficiency Droop in Wide-Well InGaN-Based Light-Emitting Diodes”, Applied Physics Express 4 012106 (2011)

[14] A. Y. Kim, W. Götz, D. A. Seigerwald, J. J. Wierer, N. F. Gardner, J. Sun, S. A. Stockman, P. S. Martin, M. R. Krames, R. S. Kern, and F. M. Steranka, “Performance of High‐Power AlInGaN Light Emitting Diodes”,Phys. Status Solidi A 188, 15 (2001)

[15] Shuji Nakamura, Masayuki Senoh, Naruhito Iwasa and Shin-ichi Nagahama, “High-Brightness InGaN Blue, Green and Yellow Light-Emitting Diodes with Quantum Well Structures”,Jpn. J. Appl. Phys. 34 L797 (1995)

[16] I. V. Rozhansky and D. A. Zakheim, “Analysis of processes limiting quantum efficiency of AlGaInN LEDs at high pumping”,Phys. Status Solidi A 204, 227 (2007)

[17] K. T. Delaney, P. Rinke, and C. G. Van de Walle, “Auger recombination rates in nitrides from first principles”, Appl. Phys. Lett. 94, 191109 (2009)

[18] Jun Ho Son and Jong-Lam Lee, “Numerical analysis of efficiency droop induced by piezoelectric polarization in InGaN/GaN light-emitting diodes”, Appl. Phys. Lett. 97, 032109 (2010)

[19] J. Hader, J. V. Moloney, and S. W. Koch, “Temperature-dependence of the internal efficiency droop in GaN-based diodes”, Appl. Phys. Lett. 99, 181127 (2011)

[20] J. Piprek, P. Abraham, and J. E. Bowers, “Self-consistent analysis of high-temperature effects on strained-layer multiquantum-well InGaAsP-InP lasers”, IEEE J. Quantum Electron. 36, 366 (2000)

[21] K. J. Vampola, M. Iza, S. Keller, S. P. DenBaars, and S. Nakamura, “Measurement of electron overflow in 450 nm InGaN light-emitting diode structures”, Appl. Phys. Lett. 94, 061116 (2009)

[22] Martin F. Schubert, Sameer Chhajed, Jong Kyu Kim, and E. Fred Schubert, Daniel D. Koleske, Mary H. Crawford, Stephen R. Lee, Arthur J. Fischer,Gerald Thaler, and Michael A. Banas, “Effect of dislocation density on efficiency droop in GaInN∕GaN light-emitting diodes”, Appl. Phys. Lett. 91, 231114 (2007)

[23] J.-R. Chen, Y.-C. Wu, S.-C. Ling, T.-S. Ko, T.-C. Lu, H.-C. Kuo, Y.-K. Kuo, S.-C. Wang, “Investigation of wavelength-dependent efficiency droop in InGaN light-emitting diodes”, Appl Phys B 98, 799 (2010)

[24] E. Fred Schubert , “Light-emitting diodes”, Second edition, pp.138-199 (2006)

[25] Hideto Miyake, Chia-Hung Lin, Kenta Tokoro, Kazumasa Hiramatsu, “Preparation of high-quality AlN on sapphire by high-temperature face-to-face annealing”, Journal of Crystal Growth 456, pp. 155-159 (2016)

[26] Lu Zhao, Kun Yang, Yujie Ai, Lian Zhang, Xiaolong Niu, Hongrui Lv, Yun Zhang, “Crystal quality improvement of sputtered AlN film on sapphire substrate by high-temperature annealing”, IEEE Journal of Quantum Electronics (2005)

[27] Woei-Kai Wang, Dong-Sing Wuu, Shu-Hei Lin, Pin Han, Ray-Hua Horng, Ta-Cheng Hsu, Donald Tai-Chan Huo,Ming-Jiunn Jou, Yuan-Hsin Yu, and Aikey Lin, “Efficiency improvement of near-ultraviolet InGaN LEDs using patterned sapphire substrates”, Appl. Phys. Lett. 89, pp. 1-3 (2006)

[28] D. S. Wuu, W. K. Wang, W. C. Shih, R. H. Horng, C. E. Lee, W. Y. Lin, and J. S. Fang, “Enhanced output power of near-ultraviolet InGaN-GaN LEDs grown on patterned sapphire substrates”, IEEE Photonics Technology Letters (2005)

[29] Chang-Chi Pan, Chi-Hsun Hsieh, Chih-Wei Lin, and Jen-Inn Chyi, “Light output improvement of InGaN ultraviolet light-emitting diodes by using wet-etched stripe-patterned sapphire substrates”, Journal of Applied Physics 102, 084503 (2007)

[30] M. T. Wang, K. Y. Liao, and Y. L. Li, "Growth mechanism and strain variation of GaN material grown on patterned sapphire substrates with various pattern designs," IEEE Photon. Technol. Lett., vol. 23, no. 14, pp. 962–964, Jul. (2011)

[31] C.H. Liu, R.W. Chuang, S.J. Chang, Y.K. Su, L.W. Wu, and C.C. Lin, "Improved light output power of InGaN/GaN MQW LEDs by lower temperature p-GaN rough surface," Mater. Sci. Eng. B, vol. 112, pp. 10–13, May (2004)

[32] Michele Conroy, Vitaly Z. Zubialevich, Haoning Li, Nikolay Petkov, Justin D. Holmes and Peter J. Parbrook, “Epitaxial lateral overgrowth of AlN on self-assembled patterned nanorods”, J. Mater. Chem. C, PP. 431-437 (2015)

[33] Mei-Tan Wang, Frank Brunner, Kuan-Yung Liao, Yun-Li Li, Snow H. Tseng, Markus Weyers, “Optimization of GaN wafer bow grown on cone shaped patternedsapphire substrates”, Journal of Crystal Growth 363 (2013)
電子全文 電子全文(網際網路公開日期:20250818)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top