|
[1] C. H. Ho, C.-L. Hsu, C.-C. Chen, J.-T. Liu, C.-S. Wu, C.-C. Huang, C. Hu, and F.-L. Yang, “9nm Half-Pitch Functional Resistive Memory Cell with <1A Programming Current Using Thermally Oxidized Sub-Stoichiometric WOx Film,” in IEEE IEDM Tech. Dig., pp. 19.1.1-19.1.4, 2010, doi: 10.1109/IEDM.2010.5703389. [2] B. Govoreanu, G. S. Kar, Y-Y. Chen, V. Paraschiv, S. Kubicek, A. Fantini, I. P. Radu, L. Goux, S. Clima, R. Degraeve, N. Jossart, O. Richard, T. Vandeweyer, K. Seo, P. Hendrickx, G. Pourtois, H. Bender, L. Altimime, D. J. Wouters, J. A. Kittl, and M. Jurczak, “10×10nm2 Hf/HfOx Crossbar Resistive RAM with Excellent Performance, Reliability and Low-Energy Operation,” in IEEE IEDM Tech. Dig., pp. 31.6.1-31.6.4, 2011, doi: 10.1109/IEDM.2011.6131652. [3] Y.-T. Chung, P.-C. Su, Y.-H. Cheng, T. Wang, M.-C. Chen, and C.-Y. Lu, “Cycling-Induced SET-Disturb Failure Time Degradation in a Resistive Switching Memory,” IEEE Electron Device Lett., vol. 36, no. 2, pp. 135-137, 2015, doi: 10.1109/LED.2014.2385072. [4] Y.-T. Chung, P.-C. Su, W.-J. Lin, M.-C. Chen, and T. Wang, “SET/RESET Cycling-Induced Trap Creation and SET-Disturb Failure Time Degradation in a Resistive-Switching Memory,” IEEE Trans. Electron Device , vol, 63, no. 6, pp. 2367-2373, 2016, doi: 10.1109/TED.2016.2555333. [5] P. C. Su, Y. T. Chung, M. C. Chen, and T. Wang, “Investigation of Factors Affecting SET-Disturb Failure Time in a Resistive Switching Memory,” in Proc. IEEE International Memory Workshop (IMW), pp. 1-4, 2016, doi: 10.1109/IMW.2016.7495281. [6] P.-C. Su, C.-C. Hsu, S.-I Du, and T. Wang, “Characterization and modeling of SET/RESET cycling induced read-disturb failure time degradation in a resistive switching memory,” J. Appl. Phys., vol. 122, no. 21, p. 215702, 2017, doi: 10.1063/1.5009042. [7] P.-C. Su, C.-M. Jiang, C.-W. Wang, and T. Wang, “Modeling of Read-Disturb-Induced SET-State Current Degradation in a Tungsten Oxide Resistive Switching Memory,” IEEE Electron Device Lett., vol. 39, no. 11, pp. 1648-1651, 2018, doi: 10.1109/LED.2018.2868472. [8] P. C. Su, C. M. Jiang, C. W. Wang, and T. Wang, “Correlation between SET-State Current Level and Read-Disturb Failure Time in a Resistive Switching Memory,” in Proc. IEEE Int. Rel. Phys. Symp. (IRPS), P-MY.1-1-P-MY.1-5, doi: 10.1109/IRPS.2018.8353674. [9] R. Waser, R. Dittmann, G. Staikov, and K. Szot, “Redox-Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges,” Adv. Mater., vol. 21, no.25-26, pp. 2632-2663, 2009, doi: 10.1002/adma.200900375. [10] B. Chen, Y. Lu, B. Gao, Y. H. Fu, F. F. Zhang, P. Huang, Y. S. Chen, L. F. Liu, X. Y. Liu, J. F. Kang, Y. Y. Wang, Z. Fang, H. Y. Yu, X. Li, X. P. Wang, N. Singh, G. Q. Lo, and D. L. Kwong, “Physical Mechanisms of Endurance Degradation in TMO-RRAM,” in IEEE IEDM Tech. Dig., pp. 12.3.1-12.3.4, 2011, doi: 10.1109/IEDM.2011.6131539. [11] J. Song, D. Lee, J. Woo, Y. Koo, E. Cha, S. Lee, J. Park, K. Moon, S. H. Misha, A. Prakash, and H. Hwang, “Effects of RESET Current Overshoot and Resistance State on Reliability of RRAM,” IEEE Electron Device Lett., vol. 35, no. 6, pp. 636-638, 2014, doi: 10.1109/LED.2014.2316544. [12] A. Flocke and T. G. Noll, “Fundamental analysis of resistive nano-crossbars for the use in hybrid Nano/CMOS-memory,” in Proc. 33rd ESSCIRC, p. 328, 2007, doi: 10.1109/ESSCIRC.2007.4430310. [13] H. Li, H.-Y. Chen, Z. Chen, B. Chen, R. Liu, G. Qiu, P, Huang, F, Zhang, Z. Jiang, B. Gao, L. Liu, X. Liu, S. Yu, H.-S. P. Wong, and J. Kang, ” Write Disturb Analyses on Half-Selected Cells of Cross-Point RRAM Arrays,” in Proc. IEEE Int. Rel. Phys. Symp. (IRPS), MY.3.1-MY.3.4, doi: 10.1109/IRPS.2014.6861158. [14] S. R. Ovshinsky, “Reversible Electrical Switching Phenomena in Disordered Structures,” Phys. Rev. Lett., vol. 21, no. 20, p. 1450, 1968, doi: 10.1103/PhysRevLett.21.1450. [15] S. Kim, Y.-B. Kim, K. M. Kim, S.-J. Kim, S. R. Lee, M. Chang, E. Cho, M.-J. Lee, D. Lee, C. J. Kim, U.-I. Chung, and I.-K. Yoo, “Performance of Threshold Switching in Chalcogenide Glass for 3D Stackable Selector,” in Proc. Symp. VLSI Technol., pp. 240-241, 2013. [16] J. Shin, I. Kim, K. P. Biju, M. Jo, J. Park, J. Lee, S. Jung, W. Lee, S. Kim, S. Park, and H. Hwang, ” TiO2-based metal-insulator-metal selection device for bipolar resistive random access memory cross-point application,” J. Appl. Phys., vol. 109, no. 3, pp. 033712-1-033712-4, 2011, doi: 10.1063/1.3544205. [17] S. Kim, X. Liu, J. Park, S. Jung, W. Lee, J. Woo, J. Shin, G. Choi, C. Cho, S. Park, D. Lee, E. Cha, B.-H. Lee, H. D. Lee, S. G. Kim, S. Chung, and H. Hwang, ” Ultrathin (<10nm) Nb2O5/NbO2 Hybrid Memory with Both Memory and Selector Characteristics for High Density 3D Vertically Stackable RRAM Applications,” in Proc. Symp. VLSI Technol., pp. 155-156, 2012, doi: 10.1109/VLSIT.2012.6242508. [18] R. Midya, Z. Wang, J. Zhang, S. E. Savel'ev, C. Li, M. Rao, M. H. Jang, S. Joshi, H. Jiang, P. Lin, K. Norris, N. Ge, Q. Wu, M. Barnell, Z. Li, H. L. Xin, R. S. Williams, Q. Xia, J. J. Yang, “Anatomy of Ag/Hafnia-Based Selectors with 1010 Nonlinearity,” Adv. Mater., vol. 29, no.2, Art. No. 1604457, 2017, doi: 10.1002/adma.201604457. [19] R. S. Shenoy, K. Gopalakrishnan, B. Jackson, K. Virwani, G. W. Burr, C. T. Rettner, A. Padilla, D. S. Bethune, R. M. Shelby, A. J. Kellock, M. Breitwisch, E. A. Joseph, R. Dasaka, R. S. King, K. Nguyen, A. N. Bowers, M. Jurich, A. M. Friz, T. Topuria, P. M. Rice, and B. N. Kurdi, “Endurance and Scaling Trends of Novel Access-Devices for Multi-Layer Crosspoint-Memory based on Mixed-Ionic-Electronic-Conduction (MIEC) Materials,” in Proc. Symp. VLSI Technol., pp. 94-95, 2011. [20] W. He, H. Yang, L. Song, K. Huang, and R. Zhao, “A Novel Operation Scheme Enabling Easy Integration of Selector and Memory,” IEEE Electron Device Lett., vol. 38, no. 2, pp. 172-174, 2017, doi: 10.1109/LED.2016.2641018. [21] W. C. Chien, Y. R. Chen, Y. C. Chen, A. T. H. Chuang, F. M. Lee, Y. Y. Lin, E. K. Lai, Y. H. Shih, K. Y. Hsieh, and C.-Y. Lu, “A Forming-free WOX Resistive Memory Using a Novel Self-aligned Field Enhancement Feature with Excellent Reliability and Scalability,” in IEEE IEDM Tech. Dig., pp. 19.2.1-19.2.4, 2010, doi: 10.1109/IEDM.2010.5703390. [22] S. Larentis, F. Nardi, S. Balatti, D. C. Gilmer, and D. Ielmini, “Resistive Switching by Voltage-Driven Ion Migration in Bipolar RRAM—Part II: Modeling,” IEEE Trans. Electron Device , vol, 59, no. 9, pp. 2468-2475, 2012, doi: 10.1109/TED.2012.2202320. [23] E. Y. Wu, and J. Suñé, “Power-law voltage acceleration: A key element for ultra-thin gate oxide reliability,” Microelectronics Reliability, vol. 45, no. 12, pp. 1809-1834, 2005, doi: 10.1016/j.microrel.2005.04.004. [24] D. Ielmini, “Modeling the Universal Set/Reset Characteristics of Bipolar RRAM by Field- and Temperature-Driven Filament Growth,” IEEE Trans. Electron Device , vol, 58, no. 12, pp. 4309-4317, 2011, doi: 10.1109/TED.2011.2167513. [25] S. Yu, X. Guan, and H.-S. P. Wong, “Conduction mechanism of TiN/HfOx/Pt resistive switching memory: A trap-assisted-tunneling model,” Appl. Phys. Lett., vol. 99, no. 6, p.063507, 2011, doi: 10.1063/1.3624472. [26] E. Y. Wu, J. Sune, E. Nowak, W. Lai, and J. McKenna, “Weibull Slopes, Critical Defect Density, and The Validity of Stress-Induced-Leakage Current (SILC) Measurements,” in IEEE IEDM Tech. Dig., pp. 6.3.1-6.3.4, 2001, doi: 10.1109/IEDM.2001.979448. [27] R. Degraeve, G. Groeseneken, R. Bellens, J. L. Ogier, M. Depas, P. J. Roussel, and H. E. Maes,“New Insights in the Relation Between Electron Trap Generation and the Statistical Properties of Oxide Breakdown,” IEEE Trans. Electron Devices, vol. 45, no. 4 pp. 904-911, 1998, doi: 10.1109/16.662800. [28] J. Suñé, “New Physics-Based Analytic Approach to the Thin-Oxide Breakdown Statistics,” IEEE Electron Device Lett., vol. 22, no. 6, pp. 296-298, 2001, doi:10.1109/55.924847. [29] J. H. Stathis, “Percolation models for gate oxide breakdown” J. Appl. Phys., vol. 86, no. 10, pp. 5757-5766, 1999, doi: 10.1063/1.371590.
|