|
[1] J. Zhang and S. Singh, “Loam: Lidar odometry and mapping in real-time,” in Proceedings of Robotics: Science and Systems Conference, July 2014. [2] H. Ye, Y. Chen, and M. Liu, “Tightly coupled 3d lidar inertial odometry and mapping,” in 2019 International Conference on Robotics and Automation (ICRA), May 2019, pp. 3144–3150. [3] Cedric Le Gentil, Teresa A. Vidal-Calleja, and Shoudong Huang, "IN2LAAMA: INertial Lidar Localisation Autocalibration And MApping", ArXiv abs/1905.09517 (2019). [4] S. Zhao, Z. Fang, H. Li and S. Scherer, "A Robust Laser-Inertial Odometry and Mapping Method for Large-Scale Highway Environments," 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 2019, pp. 1285-1292, doi: 10.1109/IROS40897.2019.8967880. [5] C. Qin, H. Ye, C. E. Pranata, J. Han, and M. Liu, “LINS: A lidar-inerital state estimator for robust and fast navigation,” CoRR, vol. abs/1907.02233, 2019. [6] T. Qin, P. Li and S. Shen, "VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator," in IEEE Transactions on Robotics, vol. 34, no. 4, pp. 1004-1020, Aug. 2018, doi: 10.1109/TRO.2018.2853729 [7] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale, “Keyframe-based visual-inertial odometry using nonlinear optimization,” The International Journal of Robotics Research, vol. 34, no. 3, pp. 314–334, 2015. [8] C. Cadena et al., "Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age," in IEEE Transactions on Robotics, vol. 32, no. 6, pp. 1309-1332, Dec. 2016, doi: 10.1109/TRO.2016.2624754. [9] T. Shan and B. Englot, “Lego-loam: Lightweight and ground-optimized lidar odometry and mapping on variable terrain,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Oct 2018, pp. 4758–4765. [10] W. Hess, D. Kohler, H. Rapp and D. Andor, “Real-time loop closure in 2D LIDAR SLAM,” 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, 2016, pp. 1271-1278. [11] R. Dubé, D. Dugas, E. Stumm, J. Nieto, R. Siegwart and C. Cadena, “SegMatch: Segment based place recognition in 3D point clouds,” 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 2017, pp. 5266-5272. [12] S. Shen, N. Michael and V. Kumar, "Tightly-coupled monocular visual-inertial fusion for autonomous flight of rotorcraft MAVs," 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, 2015, pp. 5303-5310, doi: 10.1109/ICRA.2015.7139939. [13] T. Liu and S. Shen, “Spline-based initialization of monocular visual-inertial state estimators at high altitude,” IEEE Robotics and Automation Letters, vol. 2, no. 4, pp. 2224–2231, 2017. [14] C. Forster, L. Carlone, F. Dellaert and D. Scaramuzza, “On-Manifold Preintegration for Real-Time Visual–Inertial Odometry,” in IEEE Transactions on Robotics, vol. 33, no. 1, pp. 1-21, Feb. 2017. [15] J. Solà, “Quaternion kinematics for the error-state kalman filter,” CoRR, vol. abs/1711.02508, 2017. [16] D. Mellinger and V. Kumar, "Minimum snap trajectory generation and control for quadrotors," 2011 IEEE International Conference on Robotics and Automation, Shanghai, 2011, pp. 2520-2525, doi: 10.1109/ICRA.2011.5980409. [17] C. Richter, A. Bry, and N. Roy, “Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments,” in International Journal of Robotics Research, Springer, 2016. [18] S. Liu, N. Atanasov, K. Mohta and V. Kumar, "Search-based motion planning for quadrotors using linear quadratic minimum time control", Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., pp. 2872-2879, Sep. 2017. [19] S. Liu, K. Mohta, N. Atanasov and V. Kumar, "Search-based motion planning for aggressive flight in SE(3)", IEEE Robot. Autom. Lett., vol. 3, no. 3, pp. 2439-2446, Jul. 2018. [20] S. Liu, K. Mohta, N. Atanasov, and V. Kumar, “Towards search-based motion planning for micro aerial vehicles,” arXiv preprint arXiv:1810.03071, 2018. [21] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? the kitti vision benchmark suite,” in Conference on Computer Vision and Pattern Recognition (CVPR), 2012. [22] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The kitti dataset,” International Journal of Robotics Research (IJRR), 2013. [23] S. Agarwal, K. Mierle, and Others, “Ceres solver,” . [24] https://github.com/HKUST-Aerial-Robotics/A-LOAM [25] J. Zhang, M. Kaess and S. Singh, “On degeneracy of optimization-based state estimation problems,” 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, 2016, pp. 809-816. [26] E. B. Olson, “Real-time correlative scan matching,” in Robotics and Automation, 2009. ICRA’09. IEEE International Conference on. IEEE, 2009, pp. 4387–4393.
|