跳到主要內容

臺灣博碩士論文加值系統

(44.192.247.184) 您好!臺灣時間:2023/02/07 13:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃鈺茜
研究生(外文):Huang, Yu-Chien
論文名稱:探討理財機器人的使用意圖及其影響因素
論文名稱(外文):Exploring the intention of using robo-advisors and its antecedent variables
指導教授:林介鵬林介鵬引用關係
指導教授(外文):Lin, Chieh-Peng
口試委員:林介鵬溫金豐丁承周勝武
口試委員(外文):Lin, Chieh-PengUen, Jin-FengDing, CherngJoe, Sheng-Wuu
口試日期:2021-01-05
學位類別:碩士
校院名稱:國立交通大學
系所名稱:經營管理研究所
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:74
中文關鍵詞:理財機器人MOA理論相對優勢從眾行為金融科技掌握度信任投資自我效能
外文關鍵詞:robo-advisorMOA theoryrelative advantageherd behaviorfintech capabilitytrustinvestment self-efficacy
相關次數:
  • 被引用被引用:1
  • 點閱點閱:177
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
隨著金融科技的發展,理財機器人透過大數據以及AI演算法,提供紀律性的操作,能夠避免人性的貪婪心理以及人為判斷錯誤,對於投資人來說,理財機器人提供創新的理財服務。根據金管會的數據統計,截至2020年12月初已經有1 3家金融業者開辦理財機器人的相關業務,而理財機器人的資產管理規模約為新台幣22.97億元,可得知雖然理財機器人目前在台灣的規模相對算小,仍處於發展初期的階段,但當業者不斷優化以及投資人逐漸培養使用習慣後,未來理財機器人在市場上的發展潛力是不容小覷的。

本研究透過動機(Motivation)—機會(Opportunity)—能力(Ability)理論 (MOA理論)作為架構,解釋相對優勢、從眾行為及金融科技掌握度三者之間的關係,並以信任為中介變數,投資自我效能為調節變數,來探討台灣民眾對於理財機器人的使用意圖,研究結果顯示:(1)相對優勢不僅正向影響使用意圖,也會透過信任中介而間接正向影響使用意圖;(2)從眾行為會正向影響使用意圖,也會透過信任中介兩者之間的正向關係;(3)金融科技掌握度除了會正向影響使用意圖,也會透過信任中介而間接正向影響使用意圖;(4)投資自我效能會正向調節金融科技掌握度與信任間的關係;(5) 投資自我效能對相對優勢與使用意圖間具有正向調節效果。
With the development of fintech, robo-advisors use big data and AI algorithms to provide disciplined operations that can avoid human greed and human judgment errors. According to statistics from the Financial Supervisory Commission R.O.C., as of December 2020, the asset management scale of robo-advisors was about NT$ 2.297 billion. In Taiwan, the scale of robo-advisors is relatively small. However, as the industry continues to optimize functions and investors gradually cultivate usage habits, robo-advisors have great development potential in the market.

This study uses Motivation-Opportunity-Ability theory (MOA theory) as a framework to explain the relationship between relative advantage, herd behavior, and fintech capability. Also, it uses trust as mediator and investment self-efficacy as moderator to explore the intention of Taiwanese to use robo-advisors. The study result shows:(1) relative advantage positively influences use intention directly and indirectly via trust.(2) herd behavior positively influences use intention directly and indirectly via trust.(3) fintech capability positively influences use intention directly and indirectly via trust.(4) Investment self-efficacy has a positively moderated effect on the relationship between fintech capabilities and trust.(5) Investment self-efficacy has a positively moderated effect on the relationship between relative advantage and use intention.
摘要 i
Abstract ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章、緒論 1
1.1 研究背景與動機 1
1.2 研究範圍與目的 2
1.3 研究流程 2
第二章、文獻回顧與假設 4
2.1 金融科技與理財機器人 4
2.2 MOA理論 8
2.3 相對優勢 10
2.4 從眾行為 11
2.5 金融科技掌握度 13
2.6 投資自我效能 15
2.7 使用意圖 16
2.8 研究架構 17
2.9 研究假設 19
第三章、研究方法 28
3.1 研究工具 28
3.1.1 問卷前測 28
3.1.2 問卷設計 28
3.2 資料蒐集方法 33
3.3 資料分析方法 33
第四章、資料分析與結果 39
4.1 敘述性統計分析 39
4.2 驗證性因素分析 44
4.2.1 模型配適度 44
4.2.2 信度分析 45
4.2.3 效度分析 45
4.3 迴歸分析 48
4.4 中介效果 52
4.5 路徑分析 53
4.6 調節中介分析 55
第五章、結論與建議 56
5.1 研究結論 56
5.1.1 相對優勢、信任與使用意圖之間關係 57
5.1.2 從眾行為、信任與使用意圖之間關係 57
5.1.3 金融科技掌握度、信任與使用意圖之間關係 57
5.1.4 投資自我效能調節效果 58
5.2 理論及管理意涵 58
5.3 研究限制與未來研究建議 60
參考文獻 62
附錄-受測問卷 72
參考文獻
中文參考資料
江佳倫(2016)。消費者對於企業會員卡APP使用意圖之研究-以習慣為干擾變數。國立高雄第一科技大學行銷與流通管理研究所碩士論文。
吳佳儒(2000)。HR專業人員才能需求模型之建立─以個案公司為例。國立中央大學人力資源管理研究所碩士論文。
沈緯鈞、廖主民(2011)。運動心理因子之中介模式分析策略-重新審視迴歸分析取向。中華體育季刊,25(1),91-99。
金融監督管理委員會(2016)。金融科技發展白皮書。金融監督管理委員會。
張俊鴻(2014)。內外部知識、吸收能力與創新績效之關係:雙元性之調節效果。國立中興大學企業管理學系碩士論文。
陳立軒(2019)。台灣民眾對理財機器人使用意願之風險認知與信任研究。國立中山大學資訊管理學系研究所碩士論文。
陳新轉(2004)。九年一貫課程社會學習領域第四階段能力指標詮釋解讀法之研究。中等教育,55(4),90-113。
董仲強(2013)。行動裝置使用者對於雲端運算科技採用意願之研究。國立臺南大學科技管理研究所碩士論文。
劉根銘(2018)。從眾行為傾向與知覺風險對行動支付使用意願影響之研究。世新大學資訊管理學研究所碩士論文。
劉得禎(2014)。資訊系統品質與從眾行為對行動通訊應用軟體WeChat接受程度影響之研究-大陸一二線城市之比較。大葉大學管理學院碩士在職專班碩士論文。
鄭采玉(2008)。國小學生社會領域學習動機與學習滿意度關係之研究。國立屏東教育大學社會科教育學所碩士論文。

英文參考資料
Ajzen, I. (1985). From intentions to actions: A theory of planned behavior. In J. Kuhl & J. Beckman (Eds), Action-control: From cognition to behavior (pp. 11-39). Heidelberg: Springer.
Akroush, M. N., & Al-Debei, M. M. (2015). An integrated model of factors affecting consumer attitudes towards online shopping. Business Process Management Journal, 21(6), 1353-1376.
Allen, V. L. (1965). Situational factors in conformity. Advances in Experimental Social Psychology, 2(1), 133-175.
Anderson, J. C., & Gerbing, D. W. (1988). Structural equation modeling in practice: A review and recommended two-step approach. Psychological bulletin, 103(3), 411-423.
Argote, L., McEvily, B. , & Reagans, R. (2003). Managing knowledge in organizations: An integrative framework and review of emerging themes. Management Science, 49(4), 571-582.
Asch, S. E. (1951). Effects of group pressure upon the modification and distortion of judgments. In Guetzkow, H. (Eds), Groups, leadership and men (pp. 177–190). Carnegie.
Asebedo, S., & Payne, P. (2019). Market volatility and financial satisfaction: The role of financial self-efficacy. Journal of Behavioral Finance, 20(1), 42-52.
Bagozzi, R. P., & Yi, Y. (1998). On the evaluation for structural equation models. Journal of the Academy of Marketing Science, 16(1), 74-94.
Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review, 84(2), 191-215.
Baron, R. M., & Kenny, D. A. (1986). The moderator–mediator variable distinction in social psychological research:Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51(6), 1173-1182.
Bayton, J. A. (1958). Motivation, cognition, learning—basic factors in consumer behavior. Journal of Marketing, 22(3), 282-289.
Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin, 88(3), 588-606.
Bhattacherjee, A., Limayem, M., & Cheung, C. M. (2012). User switching of information technology: A theoretical synthesis and empirical test. Information & Management, 49(7-8), 327-333.
Binney, W., Hall, J., & Oppenheim, P. (2006). The nature and influence of motivation within the MOA framework: implications for social marketing. International Journal of Nonprofit and Voluntary Sector Marketing, 11(4), 289-301.
Britt, S. H. (1950). The strategy of consumer motivation. Journal of Marketing, 14(5), 666-674.
Brucks, M. (1985). The effects of product class knowledge on information search behavior. Journal of Consumer Research, 12(1), 1-16.
Burnkrant, R. E. (1976). A motivational model of information processing intensity. Journal of Consumer Research, 3(1), 21-30.
Burnkrant, R. E., & Cousineau, A. (1975). Informational and normative social influence in buyer behavior. Journal of Consumer Research, 2(3), 206-215.
Chang, C. C., Hung, S. W., Cheng, M. J., & Wu, C. Y. (2015). Exploring the intention to continue using social networking sites: The case of Facebook. Technological Forecasting and Social Change, 95, 48-56.
Chen, J., Teng, L., Yu, Y., & Yu, X. (2016). The effect of online information sources on purchase intentions between consumers with high and low susceptibility to informational influence. Journal of Business Research, 69(2), 467-475.
Chen, K., Chen, J. V., & Yen, D. C. (2011). Dimensions of self-efficacy in the study of smart phone acceptance. Computer Standards & Interfaces, 33(4), 422-431.
Chen, Y. H., & Barnes, S. (2007). Initial trust and online buyer behavior. Industrial Management & Data Systems, 107(1), 21-36.
Choudhury, V., & Karahanna, E. (2008). The relative advantage of electronic channels: a multidimensional view. MIS Quarterly, 32(1), 179-200.
Chua, E. L., Chiu, J. L., & Chiu, C. L. (2020). Factors influencing trust and behavioral intention to use Airbnb service innovation in three ASEAN countries. Asia Pacific Journal of Innovation and Entrepreneurship, 14(2), 175-188.
Clark, B. H., Abela, A. V., & Ambler, T. (2005). Organizational motivation, opportunity and ability to measure marketing performance. Journal of Strategic Marketing, 13(4), 241-259.
Cohen, P. R., & Levesque, H. J. (1990). Intention is choice with commitment. Artificial Intelligence, 42(2-3), 213-261.
Cohen, W. M., & Levinthal, D. A. (1990). Absorptive capacity: A new perspective on learning and innovation. Administrative Science Quarterly, 35(1), 128-152.
Compeau, D.R., & Higgins, C.A. (1995), Computer self-efficacy: development of a measure and initial test. MIS Quarterly, 19(2), 189-211.
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-340.
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management Science, 35(8), 982-1003.
Deutsch, M., & Gerard, H. B. (1955). A study of normative and informational social influences upon individual judgment. The Journal of Abnormal and Social Psychology, 51(3), 629-636.
Eastin, M. S., & LaRose, R. (2000). Internet self-efficacy and the psychology of the digital divide. Journal of Computer-Mediated Communication, 6(1), 1-20.
Ellen, P. S. (1994). Do we know what we need to know? Objective and subjective knowledge effects on pro-ecological behaviors. Journal of Business Research, 30(1), 43–52.
Fagan, M. H., Neill, S., & Wooldridge, B. R. (2004). An empirical investigation into the relationship between computer self-efficacy, anxiety, experience, support and usage. Journal of Computer Information Systems, 44(2), 95-104.
Financial Stability Board(2017), Financial stability implications from FinTech: supervisory and regulatory issues that merit authorities’ attention. Retrieved from http://www.fsb.org/2017/06/financial-stability-implications-from-fintech/
Forbes, J., & Kara, S. M. (2010). Confidence mediates how investment knowledge influences investing self-efficacy. Journal of Economic Psychology, 31(3), 435-443.
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50.
Gregan-Paxton, J., & John, D. R. (1997). Consumer learning by analogy: A model of internal knowledge transfer. Journal of Consumer Research, 24(3), 266–284.
Gruen, T. W., Osmonbekov, T., & Czaplewski, A. J. (2005). How e-communities extend the concept of exchange in marketing: An application of the motivation, opportunity, ability (MOA) theory. Marketing Theory, 5(1), 33-49.
Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (1998). Multivariate Data Analysis (5th ed.). New York: Macmillan.
Handarkho, Y. D. (2020). The intentions to use social commerce from social, technology, and personal trait perspectives: analysis of direct, indirect, and moderating effects. Journal of Research in Interactive Marketing, 14(3), 305-336.
Hayes, A. F. (2015). An index and test of linear moderated mediation. Multivariate Behavioral Research, 50(1), 1-22.
Holden, H., & Rada, R. (2011), Understanding the influence of perceived usability and technology self-efficacy on teachers' technology acceptance, Journal of Research on Technology in Education, 43(4), 343-367.
Hoyer, W.D., & MacInnis, D. (1997) Consumer behavior (2nd ed.). Boston, MA: Houghton Mifflin .
Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1-55.
Iacobucci, D. (2010). Structural equations modeling: Fit indices, sample size, and advanced topics. Journal of Consumer Psychology, 20(1), 90-98.
Kiesler, C. A., & Kiesler, S. B. (1969). Conformity. Addison-Wesley, Reading, MA.
Kim, C., Mirusmonov, M., & Lee, I. (2010). An empirical examination of factors influencing the intention to use mobile payment. Computers in Human Behavior, 26(3), 310-322.
Kim, S., & Park, H. (2013). Effects of various characteristics of social commerce (s-commerce) on consumers’ trust and trust performance. International Journal of Information Management, 33(2), 318-332.
Kleinbaum, D. G., Kupper, L. L., Muller, K. E., & Nizam, A. (1998). Applied regression analysis and other multivariable methods, Duxberry Press: Pacific Grove, CA.
Lascu, D. N., & Zinkhan, G. (1999). Consumer conformity: review and applications for marketing theory and practice. Journal of Marketing Theory and Practice, 7(3), 1-12.
Lawshe, C. H. (1945). Eight ways to check the value of a training program. Factory Management and Maintenance, 103(5), 117–120.
Lee, Y. K., Park, J. H., Chung, N., & Blakeney, A. (2012). A unified perspective on the factors influencing usage intention toward mobile financial services. Journal of Business Research, 65(11), 1590-1599.
Lin, H. F. (2011). An empirical investigation of mobile banking adoption: The effect of innovation attributes and knowledge-based trust. International Journal of Information Management, 31(3), 252-260.
Lin, J. C. C., & Lu, H. (2000). Towards an understanding of the behavioural intention to use a web site. International Journal of Information Management, 20(3), 197-208.
Lu, Y., Yang, S., Chau, P. Y., & Cao, Y. (2011). Dynamics between the trust transfer process and intention to use mobile payment services: A cross-environment perspective. Information & Management, 48(8), 393-403.
Ma, Q., & Liu, L. (2005). The role of internet self-efficacy in the acceptance of web-based electronic medical records. Journal of Organizational and End User Computing, 17(1), 38-57.
MacInnis, D. J., & Jaworski, B. J. (1989). Information processing from advertisements: Toward an integrative framework. Journal of Marketing, 53(4), 1-23.
Maclnnis, D. J., Moorman, C., & Jaworski, B. J. (1991). Enhancing and measuring consumers’ motivation, opportunity, and ability to process brand information from ads. Journal of Marketing, 55(4), 32-53.
Mindra, R., Moya, M., Zuze, L. T., & Kodongo, O. (2017). Financial self-efficacy: a determinant of financial inclusion. International Journal of Bank Marketing, 35(3), 338-353.
Mohr, L. B. (1969). Determinants of innovation in organizations. American Political Science Review, 63(1), 111-126.
Montford, W., & Goldsmith, R. E. (2016). How gender and financial self‐efficacy influence investment risk taking. International Journal of Consumer Studies, 40(1), 101-106.
Moore, G. C., & Benbasat, I. (1991). Development of an instrument to measure the perceptions of adopting an information technology innovation. Information Systems Research, 2(3), 192-222.
Mora‐Monge, C. A., Azadegan, A., & Teich, J. (2010). Effective benchmarking of innovation adoptions. Benchmarking: An International Journal, 17(4),472-490.
National Digital Research Centre (2014, December). So what is FinTech? Retrieved from www.ndrc.ie/2014/03/FinTech
Nordhaug, O., & Gronhaug, K. (1994). Competencies as resources in firms. International Journal of Human Resource Management, 5(1), 89-106.
Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric Theory (3rd ed.). New York:
MeGraw-Hill.
Oh, J. C., & Yoon, S. J. (2014). Predicting the use of online information services based on a modified UTAUT model. Behaviour & Information Technology, 33(7), 716-729.
Park, J. H., Suh, H. J., & Yang, H. D. (2007). Perceived absorptive capacity of individual users in performance of enterprise resource planning (ERP) usage: The case for Korean firms. Information & Management, 44(3), 300-312.
Pavlou, P. A., & El Sawy, O. A. (2006). From IT leveraging competence to competitive advantage in turbulent environments: The case of new product development. Information Systems Research, 17(3), 198-227.
Pavlou, P. A., & Gefen, D. (2004). Building effective online marketplaces with institution-based trust. Information Systems Research, 15(1), 37-59.
Pennington, R., Wilcox, H. D., & Grover, V. (2003). The role of system trust in business-to-consumer transactions. Journal of Management Information Systems, 20(3), 197-226.
Plouffe, C. R., Hulland, J. S., & Vandenbosch, M. (2001). Richness versus parsimony in modeling technology adoption decisions—understanding merchant adoption of a smart card-based payment system. Information Systems Research, 12(2), 208-222.
Ramaswami, S. N., Strader, T. J., & Brett, K. (2000). Determinants of on-line channel use for purchasing financial products. International Journal of Electronic Commerce, 5(2), 95-118.
Rao, A. R., & Monroe, K. B. (1988). The moderating effect of prior knowledge on cue utilization in product evaluations. Journal of Consumer Research, 15(2), 253-264.
Saaksjarvi, M. (2003). Consumer adoption of technological innovations. European Journal of Innovation Management, 6(2), 90-100.
Sang, Y. N., & Bekhet, H. A. (2015). Modelling electric vehicle usage intentions: an empirical study in Malaysia. Journal of Cleaner Production, 92, 75-83.
Schwab, K. (2015), World economic forum. Global Competitiveness Report. Retrieved form https://www.weforum.org/
Shao, Z., Zhang, L., Li, X., & Guo, Y. (2019). Antecedents of trust and continuance intention in mobile payment platforms: The moderating effect of gender. Electronic Commerce Research and Applications, 33, 100823-100833.
Sherif, M. (1935). A study of some social factors in perception. Archives of Psychology, 27(187), 23-46.
Shiau, W. L., Yuan, Y., Pu, X., Ray, S., & Chen, C. C. (2020). Understanding fintech continuance: perspectives from self-efficacy and ECT-IS theories. Industrial Management & Data Systems, 120(9), 1659-1689.
Statista(2020), Personal fiance report. Retrieved from http://www.statista.com/outlook/337/100/robo-advisors/worldwide
Taylor, S., & Todd, P. (1995). Decomposition and crossover effects in the theory of planned behavior: A study of consumer adoption intentions. International Journal of Research in Marketing, 12(2), 137-155.
Tornatzky, L. G., & Klein, K. J. (1982). Innovation characteristics and innovation adoption-implementation: A meta-analysis of findings. IEEE Transactions on Engineering Management, 29(1), 28-45.
Wang, Y. S., Wu, S. C., Lin, H. H., Wang, Y. M., & He, T. R. (2012). Determinants of user adoption of web automatic teller machines: an integrated model of transaction cost theory and innovation diffusion theory. The Service Industries Journal, 32(9), 1505-1525.
Zahra, S. A., & George, G. (2002). Absorptive capacity: A review, reconceptualization, and extension. Academy of Management Review, 27(2), 185-203.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊