跳到主要內容

臺灣博碩士論文加值系統

(44.211.26.178) 您好!臺灣時間:2024/06/24 21:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃奕誠
研究生(外文):Huang, I-Cheng
論文名稱:螢光壓力感測漆應用於量測葉片薄膜冷卻
論文名稱(外文):Measurement of film cooling using pressure sensitive paint
指導教授:劉耀先
指導教授(外文):Liu, Yao-Hsien
口試委員:陳慶耀黃智永
口試委員(外文):Chen, Ching-YaoHuang, Chih-Yung
口試日期:2020-08-07
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:109
語文別:中文
論文頁數:55
中文關鍵詞:翼前緣薄膜冷卻穿透式冷卻螢光壓力感測漆
外文關鍵詞:leading edgefilm coolingtranspirationpressure sensitive paint
相關次數:
  • 被引用被引用:0
  • 點閱點閱:194
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
傳統的薄膜冷卻在高吹風比的情況下,因冷卻氣體的動量較大,表面的薄膜容易覆蓋不均勻導致冷卻效率降低;穿透式冷卻為薄膜冷卻的一種,冷卻氣體透過物體表面的多孔材質噴出,多孔材質能減少冷卻氣體噴出的動量,能在物體表面形成一均勻薄膜層。本實驗在低速開放式風洞進行,並且利用螢光壓力感測漆研究在不同條件下,研究翼前緣之薄膜冷卻效率之影響。實驗參數包含雷諾數(100,000)、吹風比(0.075、0.15、0.3、與0.6 )、與紊流強度(1%與8.7%)。穿透式冷卻模型測試包含孔洞角度(1.5°與3°)、複合角度(30°)、與孔洞間距(0.1cm與0.2cm)。結果顯示,實驗模型在所有紊流強度及吹風比為0.075~0.3的條件下,薄膜冷卻效率隨著吹風比提高而提升。當孔角度和孔間距較大的條件下(孔角度3°、孔間距0.2cm),和較小的孔角度和孔間距比較起來(孔角度1.5°、孔間距0.1cm),在吹風比為0.6時最大薄膜冷卻效率差距約37%,而且冷卻孔間距的效果非常不好。在複合角的條件下,孔角度增加到3°,在隨著吹風比增加,在吹風比為0.3時最大薄膜冷卻效率差距約23%。冷卻孔為複合角之模型,較不受孔洞間距的影響,且能提供較高的薄膜冷卻效率。當孔角度為3°且孔間距為0.2cm的尺寸,在吹風比為0.075到0.3時,相較於其他模型能提供最好的薄膜冷卻效率。
This study focuses on the effect of transpiration cooling on gas turbine blade leading edge. In high blowing ratio, traditional film cooling coolant exhibit high momentum, causing coolant lift-off surface and reduced film coverage. Transpiration cooling provides a more uniform film coverage and higher film cooling effectiveness than traditional film cooling. We use pressure sensitive paint to measure film cooling effectiveness on a turbine blade leading model. Effects of the compound angle (30°), injection angle (1.5° and 3°), and hole-to-hole distances (0.1cm and 0.2cm) are studied. The test is conducted in a low-speed wind tunnel with various blowing ratios (0.075, 0.15, 0.3, and 0.6), turbulence intensity (1%, 8.7%), and a fixed Reynolds number (100,000). The coolant to mainstream blowing ratios are 0.075, 0.15, 0.3, 0.6 while the density ratio is 0.93. The results show film cooling effectiveness increase with increasing blowing ratio for all case. The film cooling effectiveness decreases with increasing injection angle and the hole-to-hole distance. For the compound angle case, the film cooling effectiveness increases with an increase in the hole angle. The compound hole also demonstrates higher effectiveness compared to the simple angle. At an injection angle of 3° and a hole-to-hole distance of 0.2cm, the highest film cooling effectiveness is achieved when the blowing ratio ranges from 0.075 to 0.3.
摘要 I
誌謝 III
目錄 IV
表目錄 VI
圖目錄 VII
符號表 IX
第一章 序論 1
1-1 前言 1
1-2 文獻回顧 2
1-3 研究目的 5
第二章 實驗原理 7
2-1 螢光壓力感測漆理論 7
2-1-1 光致發光. 7
2-1-2 氧氣淬滅 8
2-2 螢光壓力感測漆量測理論 8
2-3 實驗參數 10
2-3-1 密度比 10
2-3-2 吹風比 10
2-3-3 薄膜冷卻效率 10
第三章 實驗設備與步驟 15
3-1 螢光壓力感測漆基本配方 15
3-1-1 螢光壓力感測漆性質與配方 15
3-1-2 螢光壓力感測漆製程 16
3-2 校正曲線量測 16
3-3 螢光壓力感測漆校正步驟 17
3-4 風洞與風速量測裝置 18
3-5 模型設計 20
3-6 實驗步驟 21
3-7 不準度分析 21
第四章 結果與討論 32
4-1 驗證模型 32
4-1-1 螢光壓力感測漆塗料驗證 32
4-1-2 薄膜冷卻分布圖 32
4-1-3 縱向平均薄膜冷卻效率 33
4-2 實驗模型 34
4-2-1 薄膜冷卻分布圖 34
4-2-2 縱向平均薄膜冷卻效率 37
4-3 模型比較 39
4-3-1 孔洞間距影響 39
4-3-2 穿透式冷卻與傳統式薄膜冷卻 39
第五章 結論 51
參考文獻 53
[1]R. J. Goldstein, "Film cooling," in Advances in heat transfer, vol. 7: Elsevier, 1971, pp. 321-379.
[2]R. Goldstein, E. Eckert, F. J. I. J. o. h. Burggraf, and m. transfer, "Effects of hole geometry and density on three-dimensional film cooling," vol. 17, no. 5, pp. 595-607, 1974.
[3]B. Jubran, A. J. J. o. E. f. G. T. Brown, and Power, "Film cooling from two rows of holes inclined in the streamwise and spanwise directions," vol. 107, no. 1, pp. 84-91, 1985.
[4]M. Gritsch, A. Schulz, and S. J. J. o. T. Wittig, "Adiabatic wall effectiveness measurements of film-cooling holes with expanded exits," vol. 120, no. 3, pp. 549-556, 1998.
[5]Z. Gao and J.-C. J. J. o. H. T. Han, "Influence of film-hole shape and angle on showerhead film cooling using PSP technique," vol. 131, no. 6, p. 061701, 2009.
[6]R. J. A. J. o. H. T. Bunker, "A review of turbine shaped film cooling technology [J]," vol. 127, no. 4, pp. 441-453, 2005.
[7]B. Jubran, B. J. H. Maiteh, and M. Transfer, "Film cooling and heat transfer from a combination of two rows of simple and/or compound angle holes in inline and/or staggered configuration," vol. 34, no. 6, pp. 495-502, 1999.
[8]K. Gustafsson, T. G. J. J. o. E. f. G. T. Johansson, and Power, "An experimental study of surface temperature distribution on effusion-cooled plates," vol. 123, no. 2, pp. 308-316, 2001.
[9]S. K. Waye and D. G. Bogard, "High resolution film cooling effectiveness measurements of axial holes embedded in a transverse trench with various trench configurations," in ASME Turbo Expo 2006: Power for Land, Sea, and Air, 2006: American Society of Mechanical Engineers, pp. 205-213.
[10]J. P. Bons, C. D. MacArthur, and R. B. J. J. o. T. Rivir, "The effect of high free-stream turbulence on film cooling effectiveness," vol. 118, no. 4, pp. 814-825, 1996.
[11]C. Saumweber, A. Schulz, and S. J. J. o. t. Wittig, "Free-stream turbulence effects on film cooling with shaped holes," vol. 125, no. 1, pp. 65-73, 2003.
[12]N. H. Chowdhury, S. A. Qureshi, M. Zhang, J.-C. J. I. J. o. H. Han, and M. Transfer, "Influence of turbine blade leading edge shape on film cooling with cylindrical holes," vol. 115, pp. 895-908, 2017.
[13]M. I. Ethridge, J. M. Cutbirth, and D. G. J. J. o. T. Bogard, "Scaling of performance for varying density ratio coolants on an airfoil with strong curvature and pressure gradient effects," vol. 123, no. 2, pp. 231-237, 2001.
[14]A. Sinha, D. Bogard, and M. J. J. o. T. Crawford, "Film-cooling effectiveness downstream of a single row of holes with variable density ratio," vol. 113, no. 3, pp. 442-449, 1991.
[15]L. M. Wright, S. T. McClain, and M. D. J. J. o. t. Clemenson, "Effect of density ratio on flat plate film cooling with shaped holes using PSP," vol. 133, no. 4, p. 041011, 2011.
[16]D. P. Narzary, K.-C. Liu, A. P. Rallabandi, and J.-C. J. J. o. T. Han, "Influence of coolant density on turbine blade film-cooling using pressure sensitive paint technique," vol. 134, no. 3, p. 031006, 2012.
[17]G. Natsui, P. Johnson, M. Torrance, M. Ricklick, and J. Kapat, "The effect of transpiration on discrete injection for film cooling," in ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition, 2011: American Society of Mechanical Engineers Digital Collection, pp. 509-520.
[18]Z. Huang, Y.-B. Xiong, Y.-Q. Liu, P.-X. Jiang, and Y.-H. J. A. T. E. Zhu, "Experimental investigation of full-coverage effusion cooling through perforated flat plates," vol. 76, pp. 76-85, 2015.
[19]G. Huang, Z. Min, L. Yang, P.-X. Jiang, M. J. I. J. o. H. Chyu, and M. Transfer, "Transpiration cooling for additive manufactured porous plates with partition walls," vol. 124, pp. 1076-1087, 2018.
[20]L. Calderon, A. Curbelo, G. Gupta, and J. S. Kapat, "Adiabatic Film Cooling Effectiveness of a LAM Fabricated Porous Leading Edge Segment of a Turbine Blade," in ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, 2018: American Society of Mechanical Engineers Digital Collection.
[21]J. I. Peterson and R. V. J. R. o. S. I. Fitzgerald, "New technique of surface flow visualization based on oxygen quenching of fluorescence," vol. 51, no. 5, pp. 670-671, 1980.
[22]T. Liu, J. P. J. P. Sullivan, and T. S. Paints, "Physical Properties of Paints," pp. 33-60, 2005.
[23]J. Gregory, K. Asai, M. Kameda, T. Liu, and J. J. P. o. t. I. o. M. E. Sullivan, Part G: Journal of Aerospace Engineering, "A review of pressure-sensitive paint for high-speed and unsteady aerodynamics," vol. 222, no. 2, pp. 249-290, 2008.
[24]L. J. Zhang and R. S. J. J. T. Jaiswal, "Turbine nozzle endwall film cooling study using pressure-sensitive paint," vol. 123, no. 4, pp. 730-738, 2001.
[25]J. Ahn, S. Mhetras, and J.-C. J. J. H. T. Han, "Film-cooling effectiveness on a gas turbine blade tip using pressure-sensitive paint," vol. 127, no. 5, pp. 521-530, 2005.
[26]L. M. Wright, Z. Gao, T. A. Varvel, and J.-C. Han, "Assessment of steady state PSP, TSP, and IR measurement techniques for flat plate film cooling," in ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems, 2005: American Society of Mechanical Engineers Digital Collection, pp. 37-46.
[27]J.-C. Han, A. J. F. i. H. Rallabandi, and M. Transfer, "Turbine blade film cooling using PSP technique," vol. 1, no. 1, 2010.
[28]Y.-H. Kao, Z.-W. Jiang, and S.-C. J. F. Fang, "A Computational Simulation Study of Fluid Mechanics of Low-Speed Wind Tunnel Contractions," vol. 2, no. 2, p. 23, 2017.
[29]Z. Gao, L. M. Wright, and J.-C. Han, "Assessment of Steady State PSP and Transient IR Measurement Techniques for Leading Edge Film Cooling," in ASME 2005 International Mechanical Engineering Congress and Exposition, 2005: American Society of Mechanical Engineers, pp. 467-475.
[30]B. E. Johnson and H. Hu, "Measurement uncertainties analysis in the determination of adiabatic film cooling effectiveness by using pressure sensitive paint (PSP) technique," in Fluids Engineering Division Summer Meeting, 2014, vol. 46247: American Society of Mechanical Engineers, p. V01DT40A001.
[31]S. J. Kline, "Describing uncertainty in single sample experiments," Mech. Engineering, vol. 75, pp. 3-8, 1953..
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top