跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/11 21:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴瑞賢
研究生(外文):Lai, Ruei-Shian
論文名稱:基於FIR濾波器實現急衝度基底之運動規劃暨SLM製程規劃與熱堆積改善
論文名稱(外文):Jerk-based FIR Filters for Motion Planning and SLM Process Planning with Heat Accumulation Improvement
指導教授:李安謙
口試委員:李安謙鄭中緯陳宗麟
口試日期:2020-08-27
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:109
語文別:中文
論文頁數:115
中文關鍵詞:轉角FIR濾波器速度規劃後加減速速度規劃後加減速急衝度選擇性雷射燒熔數據驅動模型熱堆積
外文關鍵詞:cornerFIR filterfeedrate schedulingacc/dec after interpolationjerkselective laser meltingdata-driven modelheat accumulation
相關次數:
  • 被引用被引用:2
  • 點閱點閱:150
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文提出在G01軌跡中利用FIR濾波器實現急衝度基底之時間最佳化運動軌跡規劃,在滿足機台限制的前提下,使系統能以最佳的效能規劃出滿足轉角誤差限制的軌跡,且以急衝度為基底之後加減速規劃,於轉角處之速度命令、加速度命令以及急衝度命令可保有良好的連續性,此外還擁有速度命令與加速度命令起始值不必為零的優點,本文透過模擬G01軌跡驗證理論,模擬結果顯示系統特性與理論一致且相較於加速度基底能更有效改善加工時間。
對於金屬積層製造採用的是選擇性雷射燒熔技術,其優點是能夠完成高複雜度的工件且應用範圍廣泛,但製程的不穩定性一直是急需克服的難點,為此本文分別提出多底材線寬模型、線高模型與熱堆積模型來改善燒熔結果的一致性及緻密度,透過實驗建立製程參數資料庫並藉由符號回歸方法找出軌跡線寬、雷射功率與掃描速度的關係式,再搭配軌跡線高模型與針對熱堆積區域的能量調整參數,使得實驗結果在軌跡線寬的一致性及層與層之間的孔隙率良好控制,從而滿足成品所需的精度及機械強度。
The study presents that implementing the time-optimal motion planning by jerk-based FIR Filters can be applied to the G01 trajectory. Subject to the constraints, the trajectory profile generated by the method at corner can satisfy the corner error and keep the velocity, acceleration and jerk away from discontinuity. Besides, ADAI based on jerk profile does not limit the initial values of velocity and acceleration must be zero. Make the motion planning become more flexible. The study verifies the method of motion planning through simulating the G01 trajectory, and the properties of results are consistent with the theory. It also reduces the spending time compare with the acceleration-based around 5%.
Selective laser melting is an additive manufacturing method which has the advantage of manufacturing high-complexity workpieces. But the process of SLM is difficult to keep consistent and stable. To solve the problem, the study proposes the model of multi-substrate track width, the model of track height and the model of heat accumulation. The study conducts many experiments with different parameters including the width of melting track, the power of laser and the speed of scanning. The experimental results can be established as databases, then figure out the related equation by using symbolic regression. Besides, applying the model of height and power correction coefficient to the process is useful for improving the consistency of track and porosity.
目錄
摘要 i
ABSTRACT ii
誌謝 iii
第一章 緒論 1
1.1 研究目的與動機 1
1.2 文獻回顧 2
1.3 研究方法 4
1.4 內容大綱 6
第二章 急衝度基底之後加減速運動規劃 7
2.1 急衝度基底之FIR 濾波器速度規劃 9
2.2 轉角的後加減速規劃 11
2.2.1 單一方塊急衝度命令分析 13
2.2.2 轉角分軸急衝度 18
2.2.3 轉角分軸加速度 20
2.2.4 轉角分軸速度 22
2.2.5 轉角分軸軌跡 25
2.3 轉角誤差 28
2.4 G01軌跡運動規劃 28
2.4.1 轉角運動規劃 29
2.4.2 直線段運動規劃 31
2.5 模擬與討論 35
2.5.1 模擬一:偶數長度濾波器 36
2.5.2 模擬二:奇數長度濾波器 38
2.5.3 模擬三:方形軌跡 40
2.5.4 模擬四:鑽石軌跡 43
2.5.5 分析與討論 47
第三章 SLM製程模型 49
3.1 設備系統介紹 49
3.2 多底材軌跡線寬之數據驅動模型 51
3.3 轉角熱堆積區域補償 59
3.4 線高模型 73
3.5 分析與討論 76
第四章 總結 79
4.1 結論 79
4.2 未來展望 80
參考文獻 81
附錄一 製程參數實驗線寬數據 84
附錄1.1 第一層線寬數據 84
附錄1.2 第二層線寬數據 88
附錄1.3 第三層線寬數據 93
附錄二 轉角補償實驗照片 98
附錄2.1 線寬240um 98
附錄2.2 線寬260um 100
附錄2.3 五層薄壁線寬220um 101
附錄2.4 五層薄壁線寬240um 103
附錄2.5 五層薄壁線寬260um 105
附錄三 製程參數實驗線高數據 107
附錄四 Droplet驗證實驗照片 109
[1]
Lee, A. C., Lin, M. T., Pan, Y. R., & Lin, W. Y. (2011). The feedrate scheduling of NURBS interpolator for CNC machine tools. Computer-Aided Design, 43(6), 612-628.
[2]
Chen, C. S., & Lee, A. C. (1998). Design of acceleration/deceleration profiles in motion control based on digital FIR filters. International Journal of Machine Tools and Manufacture, 38(7), 799-825.
[3]
Shih, Y. T., Chen, C. S., & Lee, A. C. (2004). Path planning for CNC contouring around a corner. JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing, 47(1), 412-420.
[4]
Biagiotti, L., & Melchiorri, C. (2012). FIR filters for online trajectory planning with time-and frequency-domain specifications. Control Engineering Practice, 20(12), 1385-1399.
[5]
Tajima, S., & Sencer, B. (2016). Kinematic corner smoothing for high speed machine tools. International Journal of Machine Tools and Manufacture, 108, 27-43.
[6]
Ernesto, C. A., & Farouki, R. T. (2012). High-speed cornering by CNC machines under prescribed bounds on axis accelerations and toolpath contour error. The International Journal of Advanced Manufacturing Technology, 58(1-4), 327-338.
[7]
李家豪,「基於FIR濾波器實現轉角加減速優化」,國立交通大學機械工程研究所碩士論文, 2018.
[8]
楊敬恆,「急衝度基底之轉角加減速優化暨NURBS曲線等速過彎之速度規劃」,國立交通大學機械工程研究所碩士論文, 2019.
[9]
Kruth, J. P., Vandenbroucke, B., Van Vaerenbergh, J., & Mercelis, P. (2005). Benchmarking of different SLS/SLM processes as rapid manufacturing techniques. In Proceedings of the International Conference Polymers & Moulds Innovations PMI 2005.
[10]
Kruth, J. P., Froyen, L., Van Vaerenbergh, J., Mercelis, P., Rombouts, M., & Lauwers, B. (2004). Selective laser melting of iron-based powder. Journal of materials processing technology, 149(1-3), 616-622.
[11]
Yadroitsev, I., Gusarov, A., Yadroitsava, I., & Smurov, I. (2010). Single track formation in selective laser melting of metal powders. Journal of Materials Processing Technology, 210(12), 1624-1631.
[12]
Doubenskaia, M., Grigoriev, S., Zhirnov, I., & Smurov, I. (2016). Parametric analysis of SLM using comprehensive optical monitoring. Rapid Prototyping Journal.
[13]
Yeung, H., Neira, J., Lane, B., Fox, J., & Lopez, F. (2016, August). Laser path planning and power control strategies for powder bed fusion systems. In The Solid Freeform Fabrication Symposium (pp. 113-127).
[14]
Demir, A. G., Colombo, P., & Previtali, B. (2017). From pulsed to continuous wave emission in SLM with contemporary fiber laser sources: effect of temporal and spatial pulse overlap in part quality. The International Journal of Advanced Manufacturing Technology, 91(5-8), 2701-2714.
[15]
Di, W., Yongqiang, Y., Xubin, S., & Yonghua, C. (2012). Study on energy input and its influences on single-track, multi-track, and multi-layer in SLM. The International Journal of Advanced Manufacturing Technology, 58(9-12), 1189-1199.
[16]
Yadroitsev, I., Bertrand, P., & Smurov, I. (2007). Parametric analysis of the selective laser melting process. Applied surface science, 253(19), 8064-8069.
[17]
Lee, A. C., Huang, R. Y., Nguyen, T. D., Cheng, C. W., & Tsai, M. C. (2020). Laser Powder Bed Fusion of Multilayer Thin-walled Structures Based on Data-driven Model. Journal of Laser Micro/Nanoengineering, 15(1).
[18]
陳彥仁,「EtherCAT基層製造之迭代學習主從控制器」,國立交通大學機械工程研究所碩士論文, 2019.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top