跳到主要內容

臺灣博碩士論文加值系統

(34.204.198.73) 您好!臺灣時間:2024/07/21 16:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊念祖
研究生(外文):Yang, Nien-Zu
論文名稱:週期梯度導模共振感測器
論文名稱(外文):Gradient Grating Period Guided-Mode Resonance Sensor
指導教授:黃正昇
指導教授(外文):Huang, Cheng-Sheng
口試委員:陳國平李博仁
口試日期:2020-09-03
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:109
語文別:中文
論文頁數:56
中文關鍵詞:週期梯度導模共振品質因數陣列式晶片多重檢測
外文關鍵詞:Gradient GMRfigure of meritarray chipsmultiple detection
相關次數:
  • 被引用被引用:2
  • 點閱點閱:126
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著科技進步,疾病檢測的方式越來越多元,但檢測場所大多侷限於醫院及實驗室單位。因此,本研究的目標將開發具有低成本、快速、微型化且檢測精準的生物晶片。
本研究基於導模共振原理,開發出週期梯度導模共振(GGP-GMR)生物感測器。首先將會探討生物晶片的光學特性,並經由蔗糖溶液檢測與薄膜沉積實驗測試元件之共振半高寬與靈敏度,並以量化後的結果設計一種新型的微型化陣列式晶片。在蔗糖溶液檢測中,三種厚度分別為130、140和150 nm的GGP-GMR,模擬結果顯示半高寬在週期350 nm至400 nm間的值差異並不明顯,而厚度為130 nm的GGP-GMR,靈敏度大於其他兩者,在半高寬及靈敏度的實驗結果中也顯示了相同的趨勢。在薄膜沉積測試中,模擬與實驗結果的半高寬及靈敏度皆隨著共振波長呈上升趨勢。根據蔗糖溶液檢測與薄膜沉積實驗結果,計算定義為靈敏度與半高寬比值的品質因數(Figure of Merit, FOM),並確定了後續生物分子檢測的最佳入射波長與膜厚。
為了達到多重檢測的目標,本實驗設計一種雙通道微流道與陣列式晶片同時量測白蛋白與肌酸酐。陣列式週期梯度導模共振結構將週期範圍設計為370至390 nm,間隔2 nm,且同一週期重複100次,並選用671 nm (656 nm LED + 671 nm 窄頻帶通濾鏡)的光源做為入射光源。最後,白蛋白與肌酸酐的量測範圍分別為0.8 – 500 µg/ml與1 µg/ml – 10 mg/ml,且其檢測極限分別為17.78µg/ml與22.76µg/ml,成功在新型的陣列式週期梯度導模共振結構搭載雙通道微流道的情況下完成了多重檢測,不僅達成了低成本、微型化的架設系統,更具有快速與檢測精準的特色。
With the advancement of science and technology, there are many disease diagnostic methods, but the testing places are mostly limited to hospitals and laboratory units. Therefore, the goal of this research is to develop low-cost, fast, miniaturized and accurate biochips for potential point of care applications.
Based on the principle of guided-mode resonance, this research develops a gradient grating period guided-mode resonance (GGP-GMR) biosensor. First, the optical characteristics of GGP-GMR will be discussed, and the resonant linewidth and sensitivity will be studied through simulation calculation and experiments. A miniaturized GGP-GMR sensor array will then be designed accordingly.
Through detection of sucrose solutions, GGP-GMR with thicknesses of 130, 140 and 150 nm was investigated. The simulation results show no significant difference in linewidth in the period between 350 and 400 nm. By contrast, the thickness of 130 nm shows higher sensitivity. In the thin film deposition test, both the linewidth and sensitivity increase with wavelength in simulation and experiment. Based on sucrose solution measurement and thin film deposition experiments, figure of merit defined as the ratio of sensitivity to linewidth are calculated and the optimal incident wavelength and film thickness are determined for the subsequent biomolecule detection.
In order to achieve multiple detection, a dual-channel microfluidic channel and GGP-GMR array chip were designed to measure albumin and creatinine simultaneously. The sensor array was designed to have periods ranging from 370 to 390 nm in an increment of 2 nm and a 671 nm (656 nm LED + 671 nm narrowband filter) was used as the incident light source. Finally, the measurement ranges of albumin and creatinine are 0.8 – 500 µg/ml and 1 µg/ml – 10 mg/ml, and their detection limits are 17.78 µg/ml and 22.76 µg/ml, respectively. The proposed GGP-GMR with two-channel microfluidic chip are successfully used to achieve multiple detections simultaneously, which not only achieve a low-cost and miniaturized erection system, but also has the characteristics of rapid and accurate detection.
摘要 i
ABSTRACT iii
誌謝 v
圖目錄 ix
表目錄 xii
附表目錄 xiii
第一章、緒論 1
1.1 研究目的 1
1.2 文獻回顧 2
1.2.1 佔空比變化導膜共振生物感測器 2
1.2.2 週期梯度導膜共振生物感測器 4
1.2.3 表面電漿共振光纖感測器 5
1.2.4 結合手機之表面電漿共振光纖感測器 7
1.2.5 腎臟疾病檢測及介紹 9
1.2.6 文獻回顧小結 10
1.3 研究目標 10
第二章、研究方法 12
2.1 檢測原理與製作流程 12
2.1.1 導膜共振原理 12
2.1.2 週期梯度導膜共振設計 13
2.1.3 導膜共振結構製作 14
2.1.4 光學特性量測 15
2.2 蔗糖溶液量測 15
2.2.1 量測原理 15
2.2.2 蔗糖濃度量測 16
2.3 薄膜逐層沉積實驗 17
2.3.1 實驗原理 17
2.3.2 實驗方法 18
2.4 血清白蛋白與肌酸酐之多重檢測 18
2.4.1 流道設計與製造方法 18
2.4.2 前處理 19
2.4.3 實驗方法 19
第三章、研究成果 21
3.1. 導膜共振結構製作結果 21
3.1.1 週期梯度導膜共振(GGP-GMR)製作結果 21
3.2 光學特性量測結果 22
3.2.1 週期梯度導膜共振(GGP-GMR)光學特性量測結果 22
3.3 週期梯度導膜共振(GGP-GMR)體積靈敏度與半高寬模擬 24
3.3.1 共振半高寬(Full width at half maximum, FWHM)模擬 25
3.3.2 體積靈敏度模擬 (Bulk sensitivity) 26
3.4 週期梯度導膜共振(GGP-GMR)體積靈敏度與半高寬測試實驗 27
3.4.1共振半高寬(Full width at half maximum, FWHM)實驗 27
3.4.2體積靈敏度測試實驗 30
3.4.3 品質因數(Bulk Figure of merit, Bulk FOM)與結果 34
3.5 週期梯度導膜共振(GGP-GMR)表面靈敏度與半高寬模擬 37
3.5.1共振半高寬(Full width at half maximum, FWHM)模擬 37
3.5.2 表面靈敏度(Surface sensitivity)模擬 39
3.6 週期梯度導膜共振(GGP-GMR)表面靈敏度與半高寬測試實驗 40
3.6.1共振半高寬(Full width at half maximum, FWHM)實驗 40
3.6.2 表面靈敏度(Surface sensitivity)實驗 41
3.6.3 品質因數 (Surface Field of Merit)與結果 42
3.7 聚電解質逐層沉積實驗 43
3.8 白蛋白與肌酸酐之多重檢測 45
第四章、總結與未來工作 48
4.1 總結 48
4.2 未來工作 49
4.2.1 降低檢測極限 49
4.2.2 改善流道黏貼方式 51
參考文獻 52
附錄 54
[1] 財團法人國家衛生研究院, 2015, "臺灣慢性腎臟病臨床診療指引."
[2] 衛生福利部國民健康署, 財., 台灣腎臟醫學會, 2017, "台灣腎病年報."
[3] Triggs, G. J., Wang, Y., Reardon, C. P., Fischer, M., Evans, G. J. O., and Krauss, T. F., 2017, "Chirped guided-mode resonance biosensor," Optica, 4(2), pp. 229-234.
[4] 王彥傑, 2019, "週期梯度導膜共振之角度及生物感測器開發," 國立交通大學機械系碩士論文.
[5] Radan Slavik, J. H., Jiri Ctyroky, Eduard Brynda, 2001, "Novel spectral fiber optic sensor based on surface plasmon resonance," Sensors and Actuators B: Chemical, 74(1-3), pp. 106-111.
[6] Hu, T., Zhao, Y., and Song, A.-n., 2016, "Fiber optic SPR sensor for refractive index and temperature measurement based on MMF-FBG-MMF structure," Sensors and Actuators B: Chemical, 237.
[7] Liu, Y., Liu, Q., Chen, S., Cheng, F., Wang, H., and Peng, W., 2015, "Surface Plasmon Resonance Biosensor Based on Smart Phone Platforms," Scientific Reports, 5(1), p. 12864.
[8] Carroll, M. F., and Temte, J. L., 2000, "Proteinuria in adults: a diagnostic approach," American family physician, 62(6), pp. 1333-1340.
[9] Ewald, B., and Attia, J., 2004, "Which test to detect microalbuminuria in diabetic patients? A systematic review," Australian family physician, 33(7), pp. 565-567, 571.
[10] 1937, "International Commission for Uniform Methods of Sugar Analysis. Report of the Proceedings of the Ninth Session, 1936," Analyst, 62(732), pp. 197-200.
[11] Cunningham, B., Qiu, J., Lin, B., Li, P., and Pepper, J., "A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions," Proc. SENSORS, 2002 IEEE, pp. 212-216 vol.211.
[12] Tsukruk, V., Luzinov, Igor, and Julthongpiput, D., "Sticky Molecular Surfaces: Epoxysilane Self-Assembled Monolayers."
[13] 熊展德, 2018, "二維梯度導模共振快速檢測平台," 國立交通大學機械系碩士論文.
[14] Otte, M. A., Sepúlveda, B., Ni, W., Juste, J. P., Liz-Marzán, L. M., and Lechuga, L. M., 2010, "Identification of the Optimal Spectral Region for Plasmonic and Nanoplasmonic Sensing," ACS Nano, 4(1), pp. 349-357.
電子全文 電子全文(網際網路公開日期:20250908)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top