跳到主要內容

臺灣博碩士論文加值系統

(44.200.140.218) 您好!臺灣時間:2024/07/18 02:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃榮浩
研究生(外文):Huang, Jung-Hao
論文名稱:膠合複合材料構件之疲勞裂紋增長與壽命預測
論文名稱(外文):Prediction of Crack Propagation and Fatigue Life of Composite Parts with Adhesive Joints
指導教授:金大仁金大仁引用關係
指導教授(外文):Kam, Tai-Yan
口試委員:鄭文雅林世章
口試日期:2020-11-06
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:109
語文別:中文
論文頁數:77
中文關鍵詞:巴黎定律裂紋增長率應變能釋放率疲勞壽命
外文關鍵詞:Paris’ lawcrack growth ratestrain energy release ratefatigue life
相關次數:
  • 被引用被引用:0
  • 點閱點閱:178
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
膠合複合材料常被用於航太等產業,具有質量輕高強度的優點,但較難直接地進行損傷檢測,且反覆試驗曠日廢時,因此本文將建立一套利用Paris’ law預測疲勞壽命的方法,以減少實驗次數。本研究利用Paris’ law計算出裂紋增長速率,其中Paris’ law與應變能釋放率有關。本文透過建立單搭接試片的有限元素模型,在裂紋已知的情況下,應用內聚力模型理論來計算應變能釋放率,找出膠合面在不同裂紋時循環負載下所對應的應變能釋放率,而Paris’ law的傳播參數則由簡單的疲勞實驗數據擬合找出。使用Paris’ law計算出裂紋增長速率後,再以分段非線性的方式找出個別循環次數並加總。比較預測與實驗的壽命結果,可驗證由Paris’ law計算循環次數之可行性。最後,進行雙ㄇ字型中空樑膠合試片的疲勞實驗,以驗證本文疲勞壽命預測方法之可行性。由觀察裂紋成長的速率得知本文建立之Paris’ law可用來預測本結構之疲勞裂紋成長行為,並成功預測出裂紋成長與循環次數之關係。
Cohesive composite materials are often used in aerospace and other industries. They have the advantages of light weight and high strength, but it is difficult to directly detect damage, and repeated tests take time. Therefore, this study will establish a method using Paris’ law to predict fatigue life in order to reduce the number of experiments. This study uses Paris’ law to calculate the crack growth rate, where Paris’ law is related to the strain energy release rate. When the crack is known, the cohesion zone model theory can be used to calculate the strain energy release rate. In this study, a finite element model of the single-lap joint is established to find out the strain energy release rate corresponding to different cracks in the cohesive layer. The propagation parameters of Paris’ law are found by fitting simple fatigue experimental data. After calculating the crack growth rate using Paris’ law, find out the number of complete cycles in a section nonlinear way. Comparing the predicted and experimental results can verify the feasibility of using Paris’ law to calculate the fatigue life. Afterwards, the fatigue test of the double-shaped hollow beam cohesive test piece was carried out to verify the feasibility of the fatigue life prediction method. By observing the rate of crack growth, know that the Paris’ law established in this study can be used to predict the fatigue crack growth behavior of this structure, and accurately predict the relationship between crack growth and cycles. In addition, this study also uses strain to monitor the development of cracks in the cohesive layer. Use a finite element model to find out the external axial strain corresponding to the crack in the cohesive layer. Comparing the theoretical and experimental strain values under the same crack can verify the feasibility of monitoring cracks by strain.
摘要 ⅰ
ABSTRACT ⅱ
誌謝 ⅲ
目錄 ⅳ
表目錄 ⅷ
圖目錄 ⅸ
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 2
1-2-1 內聚力模型理論 2
1-2-2 疲勞壽命 3
1-2-3 背面應變量測 4
1-3 研究動機 5
1-4 研究目的 5
1-5 研究架構 6
第二章 理論方法介紹 9
2-1 疲勞行為下的裂紋增長 9
2-2 內聚力模型理論 10
2-3 疲勞行為下的裂紋增長 11
2-4 裂紋增長之循環次數計算過程 12
第三章 實驗架構 15
3-1 預裂紋探討 15
3-2 單搭接複合材料試片製備 16
3-3 單軸拉伸破壞試驗 18
3-4 單軸拉伸疲勞試驗 18
3-5 裂紋實際觀測 19
3-6 背面應變量測 19
第四章 有限元素分析 21
4-1 建立模型與材料常數設定 21
4-2 分析步驟 22
4-3 CONSTRAINT設定 23
4-4 網格化過程與收斂性分析 23
4-5 邊界條件與負載設定 24
4-6 膠合面預裂紋建立 24
4-7 驗證模型 25
4-8 應變能釋放速率 26
第五章 結果與討論 27
5-1 裂紋增長分析 27
5-1-1 單軸拉伸疲勞試驗 27
5-1-2 裂紋增長情形 28
5-1-3 擬合傳播參數 29
5-2 預測不同位移比R疲勞壽命 30
5-3 背面應變量測 33
5-3-1 應變變化 33
5-3-2 非破壞形式監測 34
5-3-3 應變停機標準 34
第六章 膠合技術應用與預測 35
6-1 研究目的 35
6-2 驗證參數流程 35
6-2-1 有限元模擬建模 35
6-2-2 參數代入 37
6-3 疲勞試驗 37
6-3-1 試片製備 37
6-3-2 疲勞實驗架設與設定 38
6-3-3 裂紋增長情形 39
6-4 疲勞試驗結果 40
6-5 背面應變監測 40
6-6 誤差討論及未來改善建議 41
6-6-1 試片製作 41
6-6-2 模具製作 42
6-6-3 裂紋長度判讀 42
6-6-4 建議改善方法 42
第七章 結論與未來展望 44
7-1 結論 44
7-2 未來展望 46
參考文獻 48
[1]A. Needleman, “A continuum model for void nucleation by inclusion debonding”, Journal of Applied Mechanics, Vol. 54, pp. 525-531, 1987.
[2]T. Siegmund, “An irreversible cohesive zone model for interface fatigue crack growth simulation”, Engineering Fracture Mechanics, Vol. 70, pp. 209-232, 2003.
[3]A. Ural, V. R. Krishnan, K. D. Papoulia, “A cohesive zone model for fatigue crack growth allowing for crack retardation”, International Journal of Solids and Structures, Vol. 46, pp. 2453-2462, 2009.
[4]L. Jungmin, K. Hyonny, “Stress analysis of generally asymmetric single lap adhesively bonded joints”, Journal of Adhesion, Vol. 81, pp. 443-472, 2005.
[5]C. I-Hsuan, “The progressive failure analysis of composite lap joint subjected to tensile load”, Department of Mechanical Engineering, National Chiao Tung University, 2019.
[6]H. Khoramishad, A. D. Crocombe, K. B. Katnam, I. A. Ashcroft, “Predicting fatigue damage in adhesively bonded joints using a cohesive zone model”, International Journal of fatigue, Vol. 32, pp. 1146-1158, 2010.
[7]P. Paris, F. Erdogan, “A critical analysis of crack propagation laws”, Journal of Basic Engineering, Vol. 85, pp.528-533, 1963.
[8]A. Curley, H. Hadavinia, A. Kinloch, “Predicting the service-life of adhesively-bonded joints”, International Journal of Fracture, Vol. 103, pp. 41-69, 2000.
[9]H. Khoramishad, A. D. Crocombe, K. B. Katnam, I. A. Ashcroft, “A generalised damage model for constant amplitude fatigue loading of adhesively bonded joints”, International Journal of Adhesion and Adhesives, Vol. 30, pp. 513-521, 2010.
[10]S. Tsugihiko, A. Hiroshi, “Non-destructive detection method of fatigue crack in spot-welded joint specimens”, International Congress and Exposition, 1986.
[11]H. Khoramishad, A. D. Crocombe, K. B. Katnam, I. A. Ashcroft, “Fatigue damage modelling of adhesively bonded joints under variable amplitude loading using a cohesive zone model”, Engineering Fracture Mechanics, Vol. 78, pp. 3212-3225, 2011.
[12]W. Harper, R. Hallett, “A fatigue degradation law for cohesive interface elements – Development and application to composite materials”, International Journal of Fatigue, Vol. 32, pp. 1774-1787, 2010.
[13]M. Benzeggagh, M. Kenane, “Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus”, Composites Science and Technology, Vol. 56, pp.439-449, 1996.
[14]WIKIPEDIA:Paris’ law, “https://en.wikipedia.org/wiki/Paris%27_law”.
電子全文 電子全文(網際網路公開日期:20251223)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top