( 您好!臺灣時間:2023/01/27 18:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):Ku, Jui-Chun
論文名稱(外文):Experimental Investigation of Plasma Activated Microbubbles Water Using Swirling-Meshed Injector
指導教授(外文):Wu, Jong-Shinn
外文關鍵詞:Swirling-meshed InjectorPlasma Activated MicrobubblesMicrobubble size measurement
  • 被引用被引用:1
  • 點閱點閱:225
  • 評分評分:
  • 下載下載:41
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨在開發一套電漿微氣泡產生系統與建立一套簡易微氣泡粒徑分析系統。於電漿微氣泡產生系統部分,使用旋切式微氣泡產生方法,高速旋轉的流體加上離心力的效果使得產生器中間為低壓區,外界氣體自動導入並且施加3~4 kV高電壓解離產生電漿,強勁的水流(Re~16,000)造成剪切力切割成電漿氣泡,最後再通過孔徑大小為547-77 μm的不鏽鋼網形成更小的電漿微氣泡(平均尺寸70-45 μm)。研究流程為先以計算流體力學數值模擬方法找出合適產生器外型(在常壓電漿產生區域能自動導入氣體),而後管路配置搭配噴射式泵浦與不同尺寸不鏽鋼網穩定產生75L的電漿微氣泡水。實驗發現在噴射式泵浦切斷電源後微氣泡可以維持約兩分鐘之久。在微氣泡粒徑分析系統的部分,將微氣泡水倒入一T型觀測槽並使用顯微鏡放大(40X)氣泡尺寸,透過高畫數相機(6400*4000)拍攝照片,最後使用ImageJ分析微氣泡尺寸大小分佈。透過設計不同的實驗發現在此量測系統下微氣泡尺寸分佈隨量測時間與量測高度變化小於4%。
According to the Wall Street Journal, fine bubbles technology (FBT) is a promising industry in the near future, with an expected value of $57.7 billion by 2023. FBs technology can be applied to nine different fields which include agricultural planting, fish farming, medical care, drinking water purification, animal husbandry and epidemic prevention, food cleaning, sewage purification, industrial equipment cleaning, and business travel and life. FBs are good gas carriers. According to its properties, a large number of the target gases is encapsulated in bubbles and has an appropriate retention time in the aqueous solution. Free radicals will be generated after the bubbles break up. Free radicals have great effectively to remove organic pollutants. In recent years, some scientists have tried to combine plasma technology with microbubbles to generate plasma activated microbubbles (PAMBs) water. They found that PAMBs water can remove organic pollutants efficiently.
There are two objectives in this study, one is to develop PAMBs water generation system and the other is to establish MBs size-distribution measurement system. In the PAMBs water generation system, MBs are generated by the swirling method. The fluid flows in a rotating motion to form a vortex flow. The center of MBG is a low-pressure region because of the centrifugal force. The ambient air is automatically sucked into the center, and a high voltage (3~4 kV) power is applied to create the discharge in the water simultaneously. A turbulent water pipe flow with the Re ~ 160,000 flows through the region with a strong shear force that cut the big air bubble into small plasma bubbles. A stainless steel mesh with different sizes is attached at the end of the pipe. The results show that the average sizes of the PAMBs ranges from 70 μm through 45 μm using a mesh from 547 μm through 77 μm, respectively. In this study, CFD simulations of a swirling injector with different dimensions are first performed to decide the optimal design that can suck the ambient air into the MB generator automatically. An experimental setup including a jet pump, plumbing, and a MBs generator with an end-attached mesh is established. The setup is demonstrated to be able to generaten milky MBs for lasting approximately two minutes after the jet pump is shut down. For the MBs size-distribution measurement system, the MBs water is obtained by a beaker from the test zone and is poured into a T-shaped transparent container for optical observation using a 40X stereo microscope with a high-resolution camera (6400*4000). ImageJ is then used to analyze the size distribution of MBs. It is found that MBs size distribution varies less than 4% with different measuring time (< 120s) and different position under water surface (< 20cm).
摘要 i
Abstract ii
致謝 iv
目錄 v
表目錄 viii
圖目錄 ix
符號說明 xiii
一、緒論 1
1.1 研究背景 1
1.2 文獻回顧 3
1.2.1 微氣泡的應用 3
1.2.2 微氣泡的特性 4
1.2.3 微氣泡產生方法統整 6 旋切式(Swirling method) 6 文氏管式(Venturi method) 6 噴射式(Ejector method)7 加壓溶解式(Pressurized dissolution method) 7
1.2.4 電漿生成與微氣泡結合 7 高電場作用於微氣泡水 8 電漿產生物質包進微氣泡 9
1.3 研究動機 10
1.4 研究目標 11
1.5 研究規劃 12
二、數值模擬方法 13
2.1 概述 13
2.2 統御方程式 13
2.3 數值方法 14
2.4 旋切式微氣泡產生器模型設計與邊界條件設定 14
三、實驗設備及方法 15
3.1 概述 15
3.2 電漿微氣泡水產生系統的概述 15
3.2.1 噴射式泵浦 16
3.2.2 旋切式微氣泡產生器 16
3.2.3 正弦電壓電源供應器 17
3.2.4 常壓空氣電漿束與不鏽鋼網之電極配置 17
3.3 量測方法與儀器 17
3.3.1 微氣泡粒徑分析方法 17 千萬畫素高階立體顯微鏡 18 透明壓克力T型觀測槽 18 Image J影像分析與計算微氣泡粒徑大小分佈 18
3.3.2 不同時間、高度的微氣泡粒徑量測方法 19
四、結果與討論 21
4.1 數值模擬部分 21
4.1.1 網格收斂 21
4.1.2 比較文氏管產生方式與旋切式 22
4.1.3 模型尺寸變化和喉口低壓區的產生 23
4.2實驗部分 25
4.2.1 電漿微氣泡水產生結果 25
4.2.2 不鏽鋼網對微氣泡粒徑影響 27
4.2.3 時間與高度對微氣泡粒徑影響 28
五、結論與未來展望 29
5.1結論 29
5.2未來展望 30
參考文獻 31
附錄-表格 36
附錄-圖片 42
[1] L. H.Wen, A.BinIsmail, P. M.Menon, J.Saththasivam, K.Thu, andN. K.Choon, “Case studies of microbubbles in wastewater treatment,” Desalin. Water Treat., vol. 30, no. 1–3, pp. 10–16, 2011, doi: 10.5004/dwt.2011.1217.
[2] A.Agarwal, W. J.Ng, andY.Liu, “Principle and applications of microbubble and nanobubble technology for water treatment,” Chemosphere, vol. 84, no. 9, pp. 1175–1180, 2011, doi: 10.1016/j.chemosphere.2011.05.054.
[3] S.Khuntia, S. K.Majumder, andP.Ghosh, “Microbubble-aided water and wastewater purification: A review,” Rev. Chem. Eng., vol. 28, no. 4–6, pp. 191–221, 2012, doi: 10.1515/revce-2012-0007.
[4] Q.Zhang et al., “A study of oxidative stress induced by non-thermal plasma-activated water for bacterial damage,” Appl. Phys. Lett., vol. 102, no. 20, 2013, doi: 10.1063/1.4807133.
[5] S.Ikawa, K.Kitano, andS.Hamaguchi, “Effects of pH on bacterial inactivation in aqueous solutions due to low-temperature atmospheric pressure plasma application,” Plasma Process. Polym., vol. 7, no. 1, pp. 33–42, 2010, doi: 10.1002/ppap.200900090.
[6] A.Gurung, O.Dahl, andK.Jansson, “The fundamental phenomena of nanobubbles and their behavior in wastewater treatment technologies,” Geosystem Eng., vol. 19, no. 3, pp. 133–142, 2016, doi: 10.1080/12269328.2016.1153987.
[7] H.Tsuge, Micro-and Nanobubbles: Fundamentals and Applications. CRC press, 2014.
[8] R.Parmar andS. K.Majumder, “Microbubble generation and microbubble-aided transport process intensification-A state-of-the-art report,” Chem. Eng. Process. Process Intensif., vol. 64, pp. 79–97, 2013, doi: 10.1016/j.cep.2012.12.002.
[9] R.Parmar andS. K.Majumder, “Terminal rise velocity, size distribution and stability of microbubble suspension,” Asia-Pacific J. Chem. Eng., vol. 10, no. 3, pp. 450–465, May2015, doi: 10.1002/apj.1891.
[10] R. C.Tolman, “The effect of droplet size on surface tension,” J. Chem. Phys., vol. 17, no. 3, pp. 333–337, 1949, doi: 10.1063/1.1747247.
[11] M.Takahashi, “ζ Potential of microbubbles in aqueous solutions: Electrical properties of the gas - Water interface,” J. Phys. Chem. B, vol. 109, no. 46, pp. 21858–21864, 2005, doi: 10.1021/jp0445270.
[12] H.Ohnari, "Swirling fine-bubble generator." U.S. Patent No. 6,382,601. 7 May 2002.
[13] H.Ohnari, " Swirling type micro-bubble generating system." U.S. Patent No. 07472893B2. 6 Jan 2009.
[14] H.Kogawa, T.Naoe, H.Kyotoh, K.Haga, H.Kinoshita, andM.Futakawa, “Development of microbubble generator for suppression of pressure waves in mercury target of spallation source,” J. Nucl. Sci. Technol., vol. 52, no. 12, pp. 1461–1469, Dec.2015, doi: 10.1080/00223131.2015.1009188.
[15] C. H.Gabbard, “Development of a Venturi Type Bubble Generator for Use in the Molten-Salt Reactor Xenon Removal System,” No. ORNL-TM-4122. Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States), Dec.1972.doi: 10.2172/12784156
[16] J.Huang, L.Sun, M.Du, Z.Mo, andL.Zhao, “A visualized study of interfacial behavior of air–water two-phase flow in a rectangular Venturi channel,” Theor. Appl. Mech. Lett., vol. 8, no. 5, pp. 334–344, Sep.2018, doi: 10.1016/j.taml.2018.05.004.
[17] D.Bertoldi, C. C. S.Dallalba, andJ. R.Barbosa, “Experimental investigation of two-phase flashing flows of a binary mixture of infinite relative volatility in a Venturi tube,” Exp. Therm. Fluid Sci., vol. 64, pp. 152–163, 2015, doi: 10.1016/j.expthermflusci.2015.02.011.
[18] J.Huang et al., “A review on bubble generation and transportation in Venturi-type bubble generators,” Exp. Comput. Multiph. Flow, vol. 2, no. 3, pp. 123–134, Sep.2020, doi: 10.1007/s42757-019-0049-3.
[19] M.Sadatomi, A.Kawahara, K.Kano, andA.Ohtomo, “Performance of a new micro-bubble generator with a spherical body in a flowing water tube,” Exp. Therm. Fluid Sci., vol. 29, no. 5, pp. 615–623, 2005, doi: 10.1016/j.expthermflusci.2004.08.006.
[20] Z.MacHala, L.Chldekov, andM.Pelach, “Plasma agents in bio-decontamination by dc discharges in atmospheric air,” J. Phys. D. Appl. Phys., vol. 43, no. 22, 2010, doi: 10.1088/0022-3727/43/22/222001.
[21] C.Dechthummarong, “Experimental Investigation of Electrical Discharge Plasma in Air Microbubbles Water Mixture,” iEECON 2018 - 6th Int. Electr. Eng. Congr., pp. 2018–2021, 2018, doi: 10.1109/IEECON.2018.8712338.
[22] P.Vanraes, A.Nikiforov, andC.Leys, “Electrical and spectroscopic characterization of underwater plasma discharge inside rising gas bubbles,” J. Phys. D. Appl. Phys., vol. 45, no. 24, 2012, doi: 10.1088/0022-3727/45/24/245206.
[23] Y.Liu et al., “Degradation of aniline in aqueous solution using non-thermal plasma generated in microbubbles,” Chem. Eng. J., vol. 345, no. January, pp. 679–687, Aug.2018, doi: 10.1016/j.cej.2018.01.057.
[24] Y.Liu, X.Shen, J.Sun, P.Li, andA.Zhang, “Treatment of aniline contaminated water by a self-designed dielectric barrier discharge reactor coupling with micro-bubbles: optimization of the system and effects of water matrix,” J. Chem. Technol. Biotechnol., vol. 94, no. 2, pp. 494–504, 2019, doi: 10.1002/jctb.5796.
[25] Q.Wang et al., “Degradation of aqueous atrazine using persulfate activated by electrochemical plasma coupling with microbubbles: removal mechanisms and potential applications,” J. Hazard. Mater., vol. 403, no. September 2020, 2021, doi: 10.1016/j.jhazmat.2020.124087.
[26] Y.Hayashi, N.Takada, H.Kanda, andM.Goto, “Effect of fine bubbles on electric discharge in water,” Plasma Sources Sci. Technol., vol. 24, no. 5, 2015, doi: 10.1088/0963-0252/24/5/055023.
[27] Y.Hayashi, N.Takada, Wahyudiono, H.Kanda, andM.Goto, “Hydrogen Peroxide Formation by Electric Discharge with Fine Bubbles,” Plasma Chem. Plasma Process., vol. 37, no. 1, pp. 125–135, 2017, doi: 10.1007/s11090-016-9767-5.
[28] X.Wang et al., “Micro hollow cathode excited dielectric barrier discharge (DBD) plasma bubble and the application in organic wastewater treatment,” Separation and Purification Technology, vol. 240. 2020, doi: 10.1016/j.seppur.2020.116659.
[29] A.Wright et al., “Dielectric barrier discharge plasma microbubble reactor for pretreatment of lignocellulosic biomass,” AIChE J., vol. 64, no. 11, pp. 3803–3816, 2018, doi: 10.1002/aic.16212.
[30] A.Wright, M.Taglioli, F.Montazersadgh, A.Shaw, F.Iza, andH. C. H.Bandulasena, “Microbubble-enhanced DBD plasma reactor: Design, characterisation and modelling,” Chem. Eng. Res. Des., vol. 144, pp. 159–173, 2019, doi: 10.1016/j.cherd.2019.01.030.
[31] T.SHIBATA, A.OZAKI, H.TAKANA, andH.NISHIYAMA, “Water Treatment Characteristics Using Activated Air Microbubble Jet with Photochemical Reaction,” J. Fluid Sci. Technol., vol. 6, no. 2, pp. 242–251, 2011, doi: 10.1299/jfst.6.242.
[32] M. C.Wu, S.Uehara, J. S.Wu, Y. C.Xiao, T.Nakajima, andT.Sato, “Dissolution enhancement of reactive chemical species by plasma-activated microbubbles jet in water,” J. Phys. D. Appl. Phys., vol. 53, no. 48, 2020, doi: 10.1088/1361-6463/abae96.
[33] Wu, Jong-Shinn, et al. "Atmospheric-pressure plasma jet generating device." U.S. Patent No. 10,121,638. 6 Nov. 2018.
[34] R.Xu, Y.Wang, andZ.Li, “Exploration of particle technology in fine bubble characterization,” Particuology, vol. 46, pp. 109–115, 2019, doi: 10.1016/j.partic.2019.04.009.
[35] P. B.Kowalczuk andJ.Drzymala, “Physical meaning of the Sauter mean diameter of spherical particulate matter,” Part. Sci. Technol., vol. 34, no. 6, pp. 645–647, 2016, doi: 10.1080/02726351.2015.1099582.
[36] E. M.Laws andJ. L.Livesey, “Flow Through Screens.,” Annu Rev Fluid Mech, vol. 10, pp. 247–266, 1978, doi: 10.1146/annurev.fl.10.010178.001335.
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top