|
[1] L. H.Wen, A.BinIsmail, P. M.Menon, J.Saththasivam, K.Thu, andN. K.Choon, “Case studies of microbubbles in wastewater treatment,” Desalin. Water Treat., vol. 30, no. 1–3, pp. 10–16, 2011, doi: 10.5004/dwt.2011.1217. [2] A.Agarwal, W. J.Ng, andY.Liu, “Principle and applications of microbubble and nanobubble technology for water treatment,” Chemosphere, vol. 84, no. 9, pp. 1175–1180, 2011, doi: 10.1016/j.chemosphere.2011.05.054. [3] S.Khuntia, S. K.Majumder, andP.Ghosh, “Microbubble-aided water and wastewater purification: A review,” Rev. Chem. Eng., vol. 28, no. 4–6, pp. 191–221, 2012, doi: 10.1515/revce-2012-0007. [4] Q.Zhang et al., “A study of oxidative stress induced by non-thermal plasma-activated water for bacterial damage,” Appl. Phys. Lett., vol. 102, no. 20, 2013, doi: 10.1063/1.4807133. [5] S.Ikawa, K.Kitano, andS.Hamaguchi, “Effects of pH on bacterial inactivation in aqueous solutions due to low-temperature atmospheric pressure plasma application,” Plasma Process. Polym., vol. 7, no. 1, pp. 33–42, 2010, doi: 10.1002/ppap.200900090. [6] A.Gurung, O.Dahl, andK.Jansson, “The fundamental phenomena of nanobubbles and their behavior in wastewater treatment technologies,” Geosystem Eng., vol. 19, no. 3, pp. 133–142, 2016, doi: 10.1080/12269328.2016.1153987. [7] H.Tsuge, Micro-and Nanobubbles: Fundamentals and Applications. CRC press, 2014. [8] R.Parmar andS. K.Majumder, “Microbubble generation and microbubble-aided transport process intensification-A state-of-the-art report,” Chem. Eng. Process. Process Intensif., vol. 64, pp. 79–97, 2013, doi: 10.1016/j.cep.2012.12.002. [9] R.Parmar andS. K.Majumder, “Terminal rise velocity, size distribution and stability of microbubble suspension,” Asia-Pacific J. Chem. Eng., vol. 10, no. 3, pp. 450–465, May2015, doi: 10.1002/apj.1891. [10] R. C.Tolman, “The effect of droplet size on surface tension,” J. Chem. Phys., vol. 17, no. 3, pp. 333–337, 1949, doi: 10.1063/1.1747247. [11] M.Takahashi, “ζ Potential of microbubbles in aqueous solutions: Electrical properties of the gas - Water interface,” J. Phys. Chem. B, vol. 109, no. 46, pp. 21858–21864, 2005, doi: 10.1021/jp0445270. [12] H.Ohnari, "Swirling fine-bubble generator." U.S. Patent No. 6,382,601. 7 May 2002. [13] H.Ohnari, " Swirling type micro-bubble generating system." U.S. Patent No. 07472893B2. 6 Jan 2009. [14] H.Kogawa, T.Naoe, H.Kyotoh, K.Haga, H.Kinoshita, andM.Futakawa, “Development of microbubble generator for suppression of pressure waves in mercury target of spallation source,” J. Nucl. Sci. Technol., vol. 52, no. 12, pp. 1461–1469, Dec.2015, doi: 10.1080/00223131.2015.1009188. [15] C. H.Gabbard, “Development of a Venturi Type Bubble Generator for Use in the Molten-Salt Reactor Xenon Removal System,” No. ORNL-TM-4122. Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States), Dec.1972.doi: 10.2172/12784156 [16] J.Huang, L.Sun, M.Du, Z.Mo, andL.Zhao, “A visualized study of interfacial behavior of air–water two-phase flow in a rectangular Venturi channel,” Theor. Appl. Mech. Lett., vol. 8, no. 5, pp. 334–344, Sep.2018, doi: 10.1016/j.taml.2018.05.004. [17] D.Bertoldi, C. C. S.Dallalba, andJ. R.Barbosa, “Experimental investigation of two-phase flashing flows of a binary mixture of infinite relative volatility in a Venturi tube,” Exp. Therm. Fluid Sci., vol. 64, pp. 152–163, 2015, doi: 10.1016/j.expthermflusci.2015.02.011. [18] J.Huang et al., “A review on bubble generation and transportation in Venturi-type bubble generators,” Exp. Comput. Multiph. Flow, vol. 2, no. 3, pp. 123–134, Sep.2020, doi: 10.1007/s42757-019-0049-3. [19] M.Sadatomi, A.Kawahara, K.Kano, andA.Ohtomo, “Performance of a new micro-bubble generator with a spherical body in a flowing water tube,” Exp. Therm. Fluid Sci., vol. 29, no. 5, pp. 615–623, 2005, doi: 10.1016/j.expthermflusci.2004.08.006. [20] Z.MacHala, L.Chldekov, andM.Pelach, “Plasma agents in bio-decontamination by dc discharges in atmospheric air,” J. Phys. D. Appl. Phys., vol. 43, no. 22, 2010, doi: 10.1088/0022-3727/43/22/222001. [21] C.Dechthummarong, “Experimental Investigation of Electrical Discharge Plasma in Air Microbubbles Water Mixture,” iEECON 2018 - 6th Int. Electr. Eng. Congr., pp. 2018–2021, 2018, doi: 10.1109/IEECON.2018.8712338. [22] P.Vanraes, A.Nikiforov, andC.Leys, “Electrical and spectroscopic characterization of underwater plasma discharge inside rising gas bubbles,” J. Phys. D. Appl. Phys., vol. 45, no. 24, 2012, doi: 10.1088/0022-3727/45/24/245206. [23] Y.Liu et al., “Degradation of aniline in aqueous solution using non-thermal plasma generated in microbubbles,” Chem. Eng. J., vol. 345, no. January, pp. 679–687, Aug.2018, doi: 10.1016/j.cej.2018.01.057. [24] Y.Liu, X.Shen, J.Sun, P.Li, andA.Zhang, “Treatment of aniline contaminated water by a self-designed dielectric barrier discharge reactor coupling with micro-bubbles: optimization of the system and effects of water matrix,” J. Chem. Technol. Biotechnol., vol. 94, no. 2, pp. 494–504, 2019, doi: 10.1002/jctb.5796. [25] Q.Wang et al., “Degradation of aqueous atrazine using persulfate activated by electrochemical plasma coupling with microbubbles: removal mechanisms and potential applications,” J. Hazard. Mater., vol. 403, no. September 2020, 2021, doi: 10.1016/j.jhazmat.2020.124087. [26] Y.Hayashi, N.Takada, H.Kanda, andM.Goto, “Effect of fine bubbles on electric discharge in water,” Plasma Sources Sci. Technol., vol. 24, no. 5, 2015, doi: 10.1088/0963-0252/24/5/055023. [27] Y.Hayashi, N.Takada, Wahyudiono, H.Kanda, andM.Goto, “Hydrogen Peroxide Formation by Electric Discharge with Fine Bubbles,” Plasma Chem. Plasma Process., vol. 37, no. 1, pp. 125–135, 2017, doi: 10.1007/s11090-016-9767-5. [28] X.Wang et al., “Micro hollow cathode excited dielectric barrier discharge (DBD) plasma bubble and the application in organic wastewater treatment,” Separation and Purification Technology, vol. 240. 2020, doi: 10.1016/j.seppur.2020.116659. [29] A.Wright et al., “Dielectric barrier discharge plasma microbubble reactor for pretreatment of lignocellulosic biomass,” AIChE J., vol. 64, no. 11, pp. 3803–3816, 2018, doi: 10.1002/aic.16212. [30] A.Wright, M.Taglioli, F.Montazersadgh, A.Shaw, F.Iza, andH. C. H.Bandulasena, “Microbubble-enhanced DBD plasma reactor: Design, characterisation and modelling,” Chem. Eng. Res. Des., vol. 144, pp. 159–173, 2019, doi: 10.1016/j.cherd.2019.01.030. [31] T.SHIBATA, A.OZAKI, H.TAKANA, andH.NISHIYAMA, “Water Treatment Characteristics Using Activated Air Microbubble Jet with Photochemical Reaction,” J. Fluid Sci. Technol., vol. 6, no. 2, pp. 242–251, 2011, doi: 10.1299/jfst.6.242. [32] M. C.Wu, S.Uehara, J. S.Wu, Y. C.Xiao, T.Nakajima, andT.Sato, “Dissolution enhancement of reactive chemical species by plasma-activated microbubbles jet in water,” J. Phys. D. Appl. Phys., vol. 53, no. 48, 2020, doi: 10.1088/1361-6463/abae96. [33] Wu, Jong-Shinn, et al. "Atmospheric-pressure plasma jet generating device." U.S. Patent No. 10,121,638. 6 Nov. 2018. [34] R.Xu, Y.Wang, andZ.Li, “Exploration of particle technology in fine bubble characterization,” Particuology, vol. 46, pp. 109–115, 2019, doi: 10.1016/j.partic.2019.04.009. [35] P. B.Kowalczuk andJ.Drzymala, “Physical meaning of the Sauter mean diameter of spherical particulate matter,” Part. Sci. Technol., vol. 34, no. 6, pp. 645–647, 2016, doi: 10.1080/02726351.2015.1099582. [36] E. M.Laws andJ. L.Livesey, “Flow Through Screens.,” Annu Rev Fluid Mech, vol. 10, pp. 247–266, 1978, doi: 10.1146/annurev.fl.10.010178.001335.
|