|
1. Gianluca Di Profio, Selene Tucci, Efrem Curcio, and Enrico Drioli.: Selective glycine polymorph crystallization by using microporous membranes. Cryst. Growth Des. 2007, 7, 526– 530. 2. Arcady L Markel, Andrey F Achkasov, Tatiana A Alekhina, Olga I Prokudina, Marina A Ryazanova, Tatiana N Ukolova, Vadim M Efimov, Elena V Boldyreva, and Vladimir V Boldyrev: Effects of the alpha- and gamma-polymorphs of glycine on the behavior of catalepsy prone rats. Pharmacol Biochem Behav. 2011, 98, 234– 240. 3. Zhimin Liu, Lin Zhong, Pinliang Ying, Zhaochi Feng, and Can Li.: Crystallization of metastable β glycine from gas phase via the sublimation of α or γ form in vacuum. Biophys. Chem. 2008, 132, 18– 22. 4. Isabelle Weissbuch, Ronit Popovitz-Biro, Meir Lahav, Leslie Leiserowitz, and Rehovot.: Understanding and control of nucleation, growth, habit, dissolution, and structure of two- and three-dimensional crystals using `tailor-made' auxiliaries. Acta Crystallogr., Sect. B: Struct. Sci. 1995, 51, 115–148. 5. Antonio Llinàs and Jonathan M Goodman.: Polymorph control: past, present, and future. Drug Discovery Today 2008. 13, 198– 210. 6. Mitsutaka Kitamura.: Controlling factor of polymorphism in crystallization process. J. Cryst. Growth. 2002, 237, 2205– 2214. 7. Teruki Sugiyama, Takuji Adachi, and Hiroshi Masuhara.: Crystallization of glycine by photon pressure of a focused continuous-wave laser beam. Chem. Lett. 2007, 36, 12, 1480-1481. 8. Thitiporn Rungsimanon, Ken-ichi Yuyama, Teruki Sugiyama, Hiroshi Masuhara, Norimitsu Tohnai, and Mikiji Miyata.: Control of crystal polymorph of glycine by photon pressure of a focused continuous wave near-infrared laser beam. J. Phys. Chem. Lett. 2010, 1, 3, 599-603. 9. Hiromasa Niinomi, Teruki Sugiyama, Miho Tagawa, Kenta Murayama, Shunta Harada, and Toru Ujihara.: Enantioselective amplification on circularly polarized laser-induced chiral nucleation from a NaClO3 solution containing Ag nanoparticles. CrystEngComm. 2016, 18, 39, 7441-7448. 10. An-Chieh Cheng, Hiromasa Niinomi, Takashige Omatsu, Shutaro Ishida, Keiji Sasaki, and Teruki Sugiyama.: Plasmonic manipulation-controlled chiral crystallization of sodium chlorate. J. Phys. Chem. Lett. 2020, 11, 11, 4422-4426. 11. John Tyndall: On the blue colour of the sky, the polarization of skylight, and on the polarization of light by cloudy matter generally. The London, Edinburgh and Dublin philosophical magazine. 1869, 37, 384–394. 12. Anthony Tam, Geir Moe, and Will Happer.: Particle formation by resonant laser light in alkali-metal vapor. Phys. Rev. Lett. 1975, 35, 24, 1630-1633. 13. Tetsuo Okutsu: Photochemically-induced crystallization of protein. J. Photochem. Photobiol. C. 2007, 8, 3, 143-155. 14. Bruce. A. Garetz, J. E. Aber, N. L. Goddard, R. G. Young, and A. S. Myerson.: Nonphotochemical, polarization-dependent, laser-induced nucleation in supersaturated aqueous urea solutions. Phys. Rev. Lett. 1996, 77, 3475-3476. 15. Hiroaki Adachi, Kazufumi Takano, Youichiroh Hosokawa, Tsuyoshi Inoue, Yusuke Mori, Hiroyoshi Matsumura, Masashi Yoshimura, Yasuo Tsunaka, Masaaki Morikawa and Shigenori Kanaya.: Laser irradiated growth of protein crystal. Jpn. J. Appl. Phys. 2003, 42, 798-800. 16. Teruki Sugiyama, Ken-ichi Yuyama, and Hiroshi Masuhara.: Laser trapping chemistry: From polymer assembly to amino acid crystallization. Acc. Chem. Res. 2012, 45 ,11, 1946-1954. 17. Julien Zaccaro, Jelena Matic, Allan S. Myerson, and Bruce A. Garetz.: Nonphotochemical, laser-induced nucleation of supersaturated aqueous glycine produces unexpected γ-polymorph. Cryst. Growth Des. 2001, 1, 1, 5-8. 18. Andrew J. Alexander and Philip J. Camp.: Non-photochemical laser-induced nucleation. J. Chem. Phys. 2019, 150, 040901. 19. Andrew J. Alexander and Philip J. Camp.: Single pulse, single crystal laser-induced nucleation of potassium chloride. Cryst. Growth Des. 2009, 9, 2, 958-963. 20. Jing Luo.: Jet and shock wave from collapse of two cavitation bubbles. Sci. Rep. 2019, 9, 1352. 21. Joachim Noack.: Influence of pulse duration on mechanical effects after laser-induced breakdown in water. J. Appl. Phys. 1998, 83, 7488. 22. Vogel Andreas, Joachim Noack, Gereon Hüttmann, and Günther Paltauf.: Mechanisms of femtosecond laser nanosurgery of cells and tissues. Appl. Phys. B. 2005, 81, 1015–1047. 23. Joachim Noack and Alfred Vogel.: Laser-Induced Plasma Formation in Water at Nanosecond to Femtosecond Time Scales: Calculation of thresholds, absorption coefficients, and energy density. IEEE Journal of Quantum Electronics. 1999, 35, 8, 1556-1567. 24. Kazuhiko Nakamura, Yoichiroh Hosokawa, and Hiroshi Masuhara.: Anthracene crystallization induced by single-shot femtosecond laser irradiation: Experimental evidence for the important role of bubbles. Cryst. Growth Des. 2007, 7, 5, 885-889. 25. Arthur. Ashkin.: Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett.1970, 24, 156. 26. Thitiporn Rungsimanon, Ken Ichi Yuyama, Sugiyama Teruki, Hiroshi Masuhara.: Crystallization in unsaturated glycine/D2O solution achieved by irradiating a focused continuous wave near infrared laser. Cryst. Growth Des. 2010, 10, 11, 4686-4688. 27. Ken-ichi Yuyama, Teruki Sugiyama, and Hiroshi Masuhara.: Millimeter-scale dense liquid droplet formation and crystallization in glycine solution induced by photon pressure. J. Phys. Chem. Lett. 2010, 1, 9, 1321-1325. 28. Ken-ichi Yuyama, Chi-Shiun Wu, Teruki Sugiyama, and Hiroshi Masuhara.: Laser trapping-induced crystallization of L-phenylalanine through its high concentration domain formation. Photochem. Photobiol. Sci. 2014, 13, 2, 254-260. 29. Chi-Shiun Wu, Pei-Yun Hsieh, Ken-ichi Yuyama, Hiroshi Masuhara, and Teruki Sugiyama.: Pseudopolymorph control of L-phenylalanine achieved by laser trapping. Cryst. Growth Des. 2018, 18, 9, 5417–5425. 30. Anwar Usman, Wei-Yi Chiang, and Hiroshi Masuhara.: Optical Trapping of Nanoparticles by Ultrashort Laser Pulses. Sci Progr. 2013, 96, 1. 31. Anwar Usman, Wei-Yi Chiang, and Hiroshi Masuhara.: Femtosecond trapping efficiency enhanced for nano-sized silica spheres. Proc. SPIE. 2012, 8458, 845833. 32. Chi-Shiun Wu, Hiroshi Yoshikawa, and Teruki Sugiyama.: Bidirectional polymorphic conversion by focused femtosecond laser irradiation. Jpn. J. Appl. Phys. 2020, 59, SIIH02. 33. Anton Husakou and Herrmann.: Supercontinuum generation in photonic crystal fibers made from highly nonlinear glasses. Applied Physics B 2003, 77, 227–234. 34. Aungtinee Kittiravechote, Wei-Yi Chiang, Anwar Usman, Ian Liau, and Hiroshi Masuhara.: Enhanced optical confinement of dye-doped dielectric nanoparticles using a picosecond-pulsed near-infrared laser. Laser Phys. Lett. 2014, 11, 076001. 35. Aungtinee Kittiravechote, Anwar Usman, Hiroshi Masuhara, and Ian Liau.: Enhanced optical confinement of dielectric nanoparticles by two-photon resonance transition. RSC Adv. 2017, 7, 42606. 36. Howard D. Flack.: Chiral and achiral crystal structures. HELVETICA, 2003, 86, 4, 905-921. 37. W. Ostwald, Z.: Studien über die Bildung und umwandlung fester Körper. Phys. Chem. 1897, 22, 289. 38. Victoria J. Hall and Garth J. Simpson.: Direct Observation of Transient Ostwald Crystallization Ordering From Racemic Serine Solutions. J. Am. Chem. Soc. 2010, 132, 13598. 39. Yusuke Kitauchi, Yasunori Kobayashi, Katsuhiro Tomioka, Shinjiro Hara, Kenji Hiruma, Takashi Fukui, and Junichi Motohisa.: Zinc blende and wurtzite crystal phase mixing and transition in indium phosphide nanowires. Nano Lett. 2011, 11, 10, 4314-4318. 40. Aaron Washington, Megan Foley, Soshan Cheong, Lieth Quffa, Christopher Breshike, John Watt, Richard Tilley, and Geoffrey Strouse.: Ostwald’s rule of stages and its role in CdSe quantum dot crystallization. J. Am. Chem. Soc. 2012, 134, 17046. 41. Tian-Hui Zhang and Xiang-Yang Liu.: Nucleation: what happens at the initial stage. Angew. Chem. Int. Ed. 2009, 48, 1308. 42. Hiromasa Niinomi, Tomoya Yamazaki, Shunta Harada, Toru Ujihara, Hitoshi Miura, Yuki Kimura, Takahiro Kuribayashi, Makio Uwaha, and Katsuo Tsukamoto.: Achiral metastable crystals of sodium chlorate forming prior to chiral crystals in solution growth. Cryst. Growth Des. 2013, 13, 5188−5192. 43. William Alfred Wooster.: Physical properties and atomic arrangements in crystals. Rep. Prog. Phys. 1953, 16, 62. 44. Ramachandran and Komaravolu Chandrasekhar.: The absolute configuration of sodium chlorate. Acta Cryst. 1957, 10, 671. 45. Cristóbal Viedma and Pedro Cintas.: Homochirality beyond grinding: deracemizing chiral crystals by temperature gradient under boiling. Chem. Commun. 2011, 47, 12786−12788. 46. Hiromasa Niinomi, Atsushi Horio, Shunta Harada, Toru Ujihara, Hitoshi Miura, Yuki Kimura, and Katsuo Tsukamoto.: Solubility measurement of a metastable achiral crystal of sodium chlorate in solution growth. Cryst. Growth Des. 2014, 394, 106-111. 47. Josep M. Ribó, Josep M. Bofill, Joaquim Crusats and Raimon Rubires.: Point‐dipole approximation of the exciton coupling model versus type of bonding and of excitons in porphyrin supramolecular structures. Chem, A Eur. J. 2001, 7 , 13, 2733–2737. 48. Aaron Gerwien, Monika Schildhauer, Stefan Thumser, Peter Mayer and Henry Dube.: Direct evidence for hula twist and single-bond rotation photoproducts. Nat Commun. 2018, 9, 2510. 49. Hiromasa Niinomi, Teruki Sugiyama, Miho Tagawa, Kenta Murayama, Shunta Harada, and Toru Ujihara.: Enantioselective amplification on circularly polarized laser-induced chiral nucleation from a NaClO3 solution containing Ag nanoparticles. CrystEngComm. 2016, 18, 39, 7441-7448. 50. Rong-Yao Wang, Peng Wang, Yineng Liu, Wenjing Zhao, Dawei Zhai, Xuhai Hong, Yinglu Ji, Xiaochun Wu, Feng Wang, Duan Zhang, Wensheng Zhang, Ruibin Liu, and Xiangdong Zhang.: Experimental observation of giant chiroptical amplification of small chiral molecules by gold nanosphere clusters. J. Phys. Chem. C. 2014, 118, 9690−9695.
|