|
1. Testa, U., Pelosi, E. & Castelli, G. "Colorectal cancer: genetic abnormalities, tumor progression, tumor heterogeneity, clonal evolution and tumor-initiating cells". Medical Sciences, 6, p.31, 2018. 2. Zhang, L. & Shay, J.W. "Multiple Roles of APC and its Therapeutic Implications in Colorectal Cancer". J Natl Cancer Inst, 109, 2017. 3. de Freitas Junior, J.C.M. & Morgado-Díaz, J.A. "The role of N-glycans in colorectal cancer progression: Potential biomarkers and therapeutic applications". Oncotarget, 7, p.19395, 2016. 4. Sobin, L.H. & Fleming, I.D. "TNM classification of malignant tumors, (1997)". Cancer: Interdisciplinary International Journal of the American Cancer Society, 80, p.1803-1804, 1997. 5. Loeffler, A.G. & Hart, M.N. Introduction to Human Disease (book), Jones & Bartlett Publishers, 2014. 6. Sobin, L.H., Gospodarowicz, M.K. & Wittekind, C. TNM classification of malignant tumours, John Wiley & Sons, 2011. 7. Mishra, J. et al. "Prospective of colon cancer treatments and scope for combinatorial approach to enhanced cancer cell apoptosis". Critical reviews in oncology/hematology, 86, p.232-250, 2013. 8. Edmondson, R., Broglie, J.J., Adcock, A.F. & Yang, L. "Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors". Assay and drug development technologies, 12, p.207-218, 2014. 9. Xu, H. et al. "Organoid technology and applications in cancer research". Journal of hematology & oncology, 11, p.116, 2018. 10. Zhou, J., Su, J., Fu, X., Zheng, L. & Yin, Z. "Microfluidic device for primary tumor spheroid isolation". Experimental hematology & oncology, 6, p.22, 2017. 11. Rausch, M. & Peker, B. "Bridging the gap between high-resolution live cell microscopy and 3D cellular models: A breakthrough method". 2020. 12. Drost, J. & Clevers, H. "Organoids in cancer research". Nature Reviews Cancer, 18, p.407-418, 2018. 13. Ohta, Y. & Sato, T. "Intestinal tumor in a dish". Frontiers in medicine, 1, p.14, 2014. 14. Baccelli, I. & Trumpp, A. "The evolving concept of cancer and metastasis stem cells". Journal of Cell Biology, 198, p.281-293, 2012. 15. Beck, B. & Blanpain, C. "Unravelling cancer stem cell potential". Nature Reviews Cancer, 13, p.727, 2013. 16. Phi, L.T.H. et al. "Cancer stem cells (CSCs) in drug resistance and their therapeutic implications in cancer treatment". Stem cells international, 2018, 2018. 17. Wuputra, K. et al. "Prevention of tumor risk associated with the reprogramming of human pluripotent stem cells". Journal of Experimental & Clinical Cancer Research, 39, p.1-24, 2020. 18. Basakran, N.S. "CD44 as a potential diagnostic tumor marker". Saudi medical journal, 36, p.273, 2015. 19. Orian-Rousseau, V. "CD44, a therapeutic target for metastasising tumours". European journal of cancer, 46, p.1271-1277, 2010. 20. Catalano, V. et al. "CD133 as a target for colon cancer". Expert opinion on therapeutic targets, 16, p.259-267, 2012. 21. Barker, N. et al. "Identification of stem cells in small intestine and colon by marker gene Lgr5". Nature, 449, p.1003-1007, 2007. 22. Hatefi, N., Nouraee, N., Parvin, M., Ziaee, S.-A.M. & Mowla, S.J. "Evaluating the expression of oct4 as a prognostic tumor marker in bladder cancer". Iranian journal of basic medical sciences, 15, p.1154, 2012. 23. Wang, D. et al. "Oct-4 and Nanog promote the epithelial-mesenchymal transition of breast cancer stem cells and are associated with poor prognosis in breast cancer patients". Oncotarget, 5, p.10803, 2014. 24. Mani, S.A. et al. "The epithelial-mesenchymal transition generates cells with properties of stem cells". Cell, 133, p.704-715, 2008. 25. Fiorini, E., Veghini, L. & Corbo, V. "Modeling cell communication in cancer with organoids: making the complex simple". Frontiers in Cell and Developmental Biology, 8, 2020. 26. Zhao, W., Li, Y. & Zhang, X. "Stemness-related markers in cancer". Cancer translational medicine, 3, p.87, 2017. 27. Elmore, S. "Apoptosis: a review of programmed cell death". Toxicologic pathology, 35, p.495-516, 2007. 28. Aubrey, B.J., Strasser, A. & Kelly, G.L. "Tumor-suppressor functions of the TP53 pathway". Cold Spring Harbor perspectives in medicine, 6, p.a026062, 2016. 29. Aubrey, B.J., Kelly, G.L., Janic, A., Herold, M.J. & Strasser, A. "How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression?". Cell Death & Differentiation, 25, p.104-113, 2018. 30. Marine, J.-C. & Lozano, G. "MDM2 -mediated ubiquitylation: p53 and beyond". Cell Death & Differentiation, 17, p.93-102, 2010. 31. Abbas, T. & Dutta, A. "p21 in cancer: intricate networks and multiple activities". Nature Reviews Cancer, 9, p.400-414, 2009. 32. Chen, J. "The cell-cycle arrest and apoptotic functions of p53 in tumor initiation and progression". Cold Spring Harbor perspectives in medicine, 6, p.a026104, 2016. 33. Qin, J.-J. et al. "Natural products targeting the p53-MDM2 pathway and mutant p53: Recent advances and implications in cancer medicine". Genes & diseases, 5, p.204-219, 2018. 34. ter Huurne, M. et al. "Critical role for P53 in regulating the cell cycle of ground state embryonic stem cells". Stem cell reports, 14, p.175-183, 2020. 35. Kim, A., Lee, S.-Y., Seo, C.-S. & Chung, S.-K. "Prunellae Spica Extract Suppresses Teratoma Formation of Pluripotent Stem Cells through p53-Mediated Apoptosis". Nutrients, 12, p.721, 2020. 36. Pistritto, G., Trisciuoglio, D., Ceci, C., Garufi, A. & D'Orazi, G. "Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies". Aging (Albany NY), 8, p.603, 2016. 37. Kalkavan, H. & Green, D.R. "MOMP, cell suicide as a BCL-2 family business". Cell Death & Differentiation, 25, p.46-55, 2018. 38. Shamas-Din, A., Kale, J., Leber, B. & Andrews, D.W. "Mechanisms of action of Bcl-2 family proteins". Cold Spring Harbor perspectives in biology, 5, p.a008714, 2013. 39. Westphal, D., Dewson, G., Czabotar, P.E. & Kluck, R.M. "Molecular biology of Bax and Bak activation and action". Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1813, p.521-531, 2011. 40. Bratton, S.B. & Salvesen, G.S. "Regulation of the Apaf-1–caspase-9 apoptosome". Journal of cell science, 123, p.3209-3214, 2010. 41. Ambrosini, G., Adida, C. & Altieri, D.C. "A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma". Nature medicine, 3, p.917-921, 1997. 42. Jaiswal, P.K., Goel, A. & Mittal, R. "Survivin: A molecular biomarker in cancer". The Indian journal of medical research, 141, p.389, 2015. 43. Chen, X., Duan, N., Zhang, C. & Zhang, W. "Survivin and tumorigenesis: molecular mechanisms and therapeutic strategies". Journal of Cancer, 7, p.314, 2016. 44. Chiou, S.-K., Jones, M.K. & Tarnawski, A.S. "Survivin-an anti-apoptosis protein: its biological roles and implications for cancer and beyond". Medical Science Monitor, 9, p.PI25-PI29, 2003. 45. Fridman, J.S. & Lowe, S.W. "Control of apoptosis by p53". Oncogene, 22, p.9030-9040, 2003. 46. Mirza, A. et al. "Human survivin is negatively regulated by wild-type p53 and participates in p53-dependent apoptotic pathway". Oncogene, 21, p.2613-2622, 2002. 47. Wang, Z., Fukuda, S. & Pelus, L.M. "Survivin regulates the p53 tumor suppressor gene family". Oncogene, 23, p.8146-8153, 2004. 48. Barbuti, A.M. & Chen, Z.-S. "Paclitaxel through the ages of anticancer therapy: exploring its role in chemoresistance and radiation therapy". Cancers, 7, p.2360-2371, 2015. 49. Yuan, H. et al. "Albumin Nanoparticle of Paclitaxel (Abraxane) Decreases while Taxol Increases Breast Cancer Stem Cells in Treatment of Triple Negative Breast Cancer". Molecular Pharmaceutics, 2020. 50. Mukhtar, E., Adhami, V.M. & Mukhtar, H. "Targeting microtubules by natural agents for cancer therapy". Molecular cancer therapeutics, 13, p.275-284, 2014. 51. Yang, C.-P.H. & Horwitz, S.B. "Taxol®: the first microtubule stabilizing agent". International journal of molecular sciences, 18, p.1733, 2017. 52. Lungu, II, Grumezescu, A.M., Volceanov, A. & Andronescu, E. "Nanobiomaterials Used in Cancer Therapy: An Up-To-Date Overview". Molecules, 24, 2019. 53. Lombardo, D., Kiselev, M.A. & Caccamo, M.T. "Smart nanoparticles for drug delivery application: development of versatile nanocarrier platforms in biotechnology and nanomedicine". Journal of Nanomaterials, 2019, 2019. 54. Ullah, R. et al. "Factors Influencing the Delivery Efficiency of Cancer Nanomedicines". AAPS PharmSciTech, 21, p.132, 2020. 55. Chenthamara, D. et al. "Therapeutic efficacy of nanoparticles and routes of administration". Biomaterials Research, 23, p.1-29, 2019. 56. Ma, P. & Mumper, R.J. "Paclitaxel nano-delivery systems: a comprehensive review". Journal of nanomedicine & nanotechnology, 4, p.1000164, 2013. 57. Langer, C.J., Mok, T. & Postmus, P.E. "Targeted agents in the third-/fourth-line treatment of patients with advanced (stage III/IV) non-small cell lung cancer (NSCLC)". Cancer treatment reviews, 39, p.252-260, 2013. 58. Chen, Y.-J. et al. "impacts of intralipid on nanodrug Abraxane therapy and on the innate immune System". Scientific reports, 10, p.1-11, 2020. 59. Lee, T.C. " Role of Haspin in human colorectal cancer using three-dimensionaltissue culture model. ". National Chiao Tung University, Master Thesis, 2017. 60. Yu, T.W. " Role of CD133 and LGR5 in colorectal cancer organoids formation using enzymatic decomposition method and three-dimensional tissue culture. ". National Chiao Tung University. Master thesis, 2018. 61. Lee, Y.T. "Expression of CD133 and E-cadherin in the formation of human colorectal cancer organoids". National Chiao Tung University. Master thesis, 2019. 62. Xiao, X. et al. "The Anti-Tumor Effect of Nab-Paclitaxel Proven by Patient-Derived Organoids". OncoTargets and therapy, 13, p.6017, 2020. 63. Beck, B. & Blanpain, C. "Unravelling cancer stem cell potential". Nature Reviews Cancer, 13, p.727-738, 2013. 64. Eguchi, T. et al. "Organoids with cancer stem cell-like properties secrete exosomes and HSP90 in a 3D nanoenvironment". PLoS One, 13, p.e0191109, 2018. 65. Iglesias, J. "nab-Paclitaxel (Abraxane®): an albumin-bound cytotoxic exploiting natural delivery mechanisms into tumors". Breast Cancer Research, 11, p.1-1, 2009. 66. Tian, X. et al. "E-cadherin/β-catenin complex and the epithelial barrier". Journal of Biomedicine and Biotechnology, 2011, 2011. 67. Wijnhoven, B., Dinjens, W. & Pignatelli, M. "E-cadherin–catenin cell–cell adhesion complex and human cancer". British Journal of Surgery, 87, p.992-1005, 2000. 68. Doucas, H., Garcea, G., Neal, C., Manson, M. & Berry, D. "Changes in the Wnt signalling pathway in gastrointestinal cancers and their prognostic significance". European journal of cancer, 41, p.365-379, 2005. 69. Beauchemin, N. & Arabzadeh, A. "Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) in cancer progression and metastasis". Cancer and Metastasis Reviews, 32, p.643-671, 2013. 70. Narayanan, V. & Weekes, C.D. "Nanoparticle albumin-bound (nab)-paclitaxel for the treatment of pancreas ductal adenocarcinoma". Gastrointestinal Cancer: Targets and Therapy, 5, p.11, 2015. 71. Khongkow, P. et al. "Paclitaxel targets FOXM1 to regulate KIF20A in mitotic catastrophe and breast cancer paclitaxel resistance". Oncogene, 35, p.990-1002, 2016. 72. Isham, C.R. et al. "Pazopanib enhances paclitaxel-induced mitotic catastrophe in anaplastic thyroid cancer". Science translational medicine, 5, p.166ra3-166ra3, 2013. 73. Hientz, K., Mohr, A., Bhakta-Guha, D. & Efferth, T. "The role of p53 in cancer drug resistance and targeted chemotherapy". Oncotarget, 8, p.8921, 2017. 74. Wang, X. et al. "Cell-cycle synchronization reverses Taxol resistance of human ovarian cancer cell lines". Cancer cell international, 13, p.77, 2013. 75. Demidenko, Z. et al. "Mechanism of G1-like arrest by low concentrations of paclitaxel: next cell cycle p53-dependent arrest with sub G1 DNA content mediated by prolonged mitosis". Oncogene, 27, p.4402-4410, 2008. 76. Guntur, V.P., Waldrep, J.C., Guo, J.J., Selting, K. & Dhand, R. "Increasing p53 protein sensitizes non-small cell lung cancer to paclitaxel and cisplatin in vitro". Anticancer research, 30, p.3557-3564, 2010. 77. Park, E. et al. "Transcriptional repression of cancer stem cell marker CD133 by tumor suppressor p53". Cell death & disease, 6, p.e1964-e1964, 2015. 78. Barzegar Behrooz, A., Syahir, A. & Ahmad, S. "CD133: beyond a cancer stem cell biomarker". Journal of drug targeting, 27, p.257-269, 2019. 79. Chen, X. et al. "p53 positively regulates the expression of cancer stem cell marker CD133 in HCT116 colon cancer cells". Oncology Letters, 16, p.431-438, 2018. 80. Szaryńska, M., Olejniczak, A., Kobiela, J., Spychalski, P. & Kmieć, Z. "Therapeutic strategies against cancer stem cells in human colorectal cancer". Oncology Letters, 14, p.7653-7668, 2017. 81. Li, W., Lee, M.-R., Choi, E. & Cho, M.-Y. "Clinicopathologic significance of survivin expression in relation to CD133 expression in surgically resected stage II or III colorectal cancer". Journal of pathology and translational medicine, 51, p.17, 2017. 82. Li, D., Hu, C. & Li, H. "Survivin as a novel target protein for reducing the proliferation of cancer cells". Biomedical reports, 8, p.399-406, 2018. 83. Lee, M.-R., Ji, S.-Y., Mia-Jan, K. & Cho, M.-Y. "Chemoresistance of CD133+ colon cancer may be related with increased survivin expression". Biochemical and biophysical research communications, 463, p.229-234, 2015. 84. Chauhan, S., Jain, N. & Nagaich, U. "Nanodiamonds with powerful ability for drug delivery and biomedical applications: Recent updates on in vivo study and patents". Journal of pharmaceutical analysis, 10, p.1-12, 2020. 85. Liu, K.-K., Cheng, C.-L., Chang, C.-C. & Chao, J.-I. "Biocompatible and detectable carboxylated nanodiamond on human cell". Nanotechnology, 18, p.325102, 2007. 86. Havlik, J. et al. "Boosting nanodiamond fluorescence: towards development of brighter probes". Nanoscale, 5, p.3208-3211, 2013. 87. Liu, K.-K. et al. "Ubiquitin-coated nanodiamonds bind to autophagy receptors for entry into the selective autophagy pathway". autophagy, 13, p.187-200, 2017.
|