跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2024/12/11 14:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:雷琬婁
研究生(外文):Lei, Wan-Lou
論文名稱:Abraxane 經由 p53 與 survivin 相反的蛋白質表現誘發人類大腸癌類器官的破壞及細胞凋亡
論文名稱(外文):Abraxane induces organoid disruption and apoptosis by opposite protein expression of p53 and survivin in human colorectal cancer
指導教授:趙瑞益趙瑞益引用關係
指導教授(外文):Chao, Juo-I
口試委員:蘇瑀鄭鈞文邱光裕
口試委員(外文):Su, YeuCheng, Chun-WenChiou, Guang-Yuh
口試日期:2020-07-23
學位類別:碩士
校院名稱:國立交通大學
系所名稱:分子醫學與生物工程研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2020
畢業學年度:109
語文別:英文
論文頁數:47
中文關鍵詞:大腸癌Tp53Survivin細胞凋亡癌症類器官Abraxane
外文關鍵詞:colorectal cancerTp53Survivinapoptosiscancer organoidAbraxane
相關次數:
  • 被引用被引用:0
  • 點閱點閱:227
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
大腸癌是消化道中最常見的惡性腫瘤之一,許多研究證據顯示,癌症幹細胞具有自我更新、導致腫瘤發生和治療抗性的能力,大腸癌類器官的形成與癌幹性、腫瘤發生及抗藥性有關。Abraxane 是一種白蛋白攜帶紫杉醇藥物,已被 FDA 核准用於人類癌症的治療,然而 Abraxane 對人類之癌症類器官中的藥物效果與抗癌機制仍不清楚。在本研究中,我們發現在人類大腸癌 CC020T 類器官中,Abraxane 會經由 p53 與 survivin 相反的角色與表現調控誘導大腸癌 CC020T 類器官的細胞凋亡。Abraxane 誘導 CC020T 癌症類器官的細胞凋亡進而破壞其結構,並同時降低癌幹標誌蛋白的表現,包括 CD133、CD44、Oct4、Nanog 和LGR5。Abraxane 誘發細胞內在路徑中的 caspase 9 活化,進而活化內在路徑的下游 caspase 3 和 PARP 蛋白的分解。再者,Abraxane 增加總 p53 蛋白及磷酸化 p53 中 Ser46 位置的蛋白表現,進而增加 p53 下游蛋白分子 PUMA 和 Bax 的表達而導致細胞凋亡。同時,Abraxane 降低抗凋亡蛋白 survivin 和 Bcl-2 蛋白的表現而誘
導細胞的凋亡。此外,利用 p53 抑制劑 Pifithrin-α 與 Abraxane合併處理 CC020T癌症類器官,會降低 p53 蛋白表現與恢復 CD133 蛋白表現量,相反地,處理survivin 的抑制劑 YM155 與 Abraxane 合併處理 CC020T 癌症類器官,會加強抑制 CD133 的蛋白表現情形。綜合以上結果,我們推測 p53 與 survivin 經由相反的角色調節 Abraxane 所誘導人類大腸癌類器官的細胞凋亡。
Colorectal cancer (CRC) is one of the most common malignant tumors of the digestive system. Studies have demonstrated that cancer stem cells (CSC) are responsible for self-renewing capability, tumor-initiating capacity, and chemoresistance. Cancer organoids are related to cancer stemness, tumorigenesis, and drug-resistance. Abraxane, albumin-bound paclitaxel, has been approved by the FDA for human cancer therapy. However, the drug efficacy and anticancer mechanism of Abraxane in human cancer organoids remain unclear. In this study, we found that p53 and survivin displayed the opposite role in the regulation of Abraxane-induced apoptosis in the human CC020T cancer organoids. Abraxane induced apoptosis by destroying the CC020T cancer organoids structure and the cancer stem cell marker proteins including CD133, CD44, Oct4, Nanog, and LGR5 were reduced. Abraxane elicited the intrinsic pathway of caspase 9 activations. The intrinsic downstream targets of activated-caspase 3 and PARP protein cleavage were induced by Abraxane. Moreover, Abraxane increased total p53 and phosphorylated p53 proteins at Ser46, and further the p53 downstream proteins PUMA and Bax for apoptosis induction. Meantime, Abraxane decreased the levels of anti-apoptotic protein such as survivin and Bcl-2 in the Abraxane-induced apoptosis. Besides, co-treatment with a p53 inhibitor Pifithrin-α and Abraxane reduced the p53 protein levels and restored the CD133 protein levels in the CC020T organoids. In contrast, co-treatment with a survivin inhibitor YM155 and Abraxane decrease the CD133 protein levels in the CC020T organoids. According to the above results, we suggest that p53 and survivin modulate the Abraxane-induced apoptosis through the opposite role in regulating human CRC organoids.
中文摘要 i
Abstract ii
Abbreviations iii
1. Introduction 1
1.1. The stages of colorectal cancer 1
1.2. CRC cancer organoids 1
1.3. The relationship between cancer organoids and cancer stemness proteins 2
1.4. Role of p53 in apoptosis and cancer development 3
1.5. Role of survivin in cancer 4
1.6. The relationship between p53 and survivin in cancer regulation 4
1.7. Abraxane in cancer therapy 5
1.8. The purpose of this study 6
2. Materials and Methods 7
2.1. Chemicals and reagent 7
2.2. Antibodies 7
2.3. 3D tissue culture system of CRC organoids 9
2.4. Western blot analysis 10
2.5. Immunofluorescence staining and confocal microscope 11
2.6. Apoptosis assay using Annexin V-PI stain by flow cytometer analysis 12
2.7. Cell cycle analysis 12
2.8. Preparation of fluorescence nanodiamond-Abraxane 13
2.9. Statistical analysis 13
3. Results and Discussion 14
3.1. Abraxane disrupts organoid structure in the CC020T organoids 14
3.2. Abraxane reduces the cancer stemness related protein levels and destroys the structure of CC020T organoids 15
3.3. Abraxane induces apoptosis by destroying the CC020T cancer organoids structure via reduction of cell adhesion proteins 15
3.4. Abraxane induces apoptosis and mitotic catastrophe in the CC020T organoids 16
3.5. Abraxane induces the intrinsic apoptosis pathway in the CC020T organoids 16
3.6. Abraxane increases the sub-G1 fraction and mitotic catastrophe in the CC020T organoids 17
3.7. Abraxane increases the phosphorylated p53 (Ser46) and its downstream proteins in the CC020T organoids 17
3.8. Abraxane decreases the protein levels of survivin and Bcl-2 in the CC020T organoids 18
3.9. Nanodiamond-labeled Abraxane enters into the CC020T organoids by confocal microscope analysis 19
4. Conclusions 20
5. References 20
6. Figures 27
Fig. 1. Abraxane disrupts the organoid structure in the CC020T organoids 27
Fig. 2. Abraxane reduces the protein levels of cancer stemness and destroys the structure of CC020T organoids. 28
Fig. 3. Abraxane decreases the E-cadherin protein levels and cell-cell adhesion in the CC020T organoids. 29
Fig. 4. Abraxane decreases the β-catenin protein levels in the CC020T organoids 30
Fig. 5. Abraxane decreases the CEACAM5 protein levels in the CC020T organoids. 31
Fig. 6. Abraxane induces apoptosis in CC020T organoids by Annexin V-PI assay under a flow cytometer.. 32
Fig. 7. Abraxane increases apoptosis in CC020T organoids by Annexin V-PI assay under a fluorescence microscope. 33
Fig. 8. Abraxane induces cleaved-forms of caspase 9, caspase 3, and PARP in CC020T organoids. 34
Fig. 9. Abraxane increases the sub-G1 fraction and mitotic arrest by flow cytometer analysis in CC020T organoids.. 35
Fig. 10. Abraxane induces mitotic catastrophe by confocal microscopy analysis in CC020T organoids.. 36
Fig. 11. Abraxane increases the protein levels of total p53 and phospho-p53 (Ser46) in CC020T organoids. 37
Fig. 12. The inhibition of p53 by pifithrin-α restores CD133 protein levels following Abraxane treatment in CC020T organoids.. 38
Fig. 13. The inhibition of survivin by YM155 increases the reduction of CD133 protein levels in CC020T organoids. 39
Fig. 14. Abraxane locates on the surface of the CC020T organoids after 4 h treatment using nanodiamond labeling by confocal microscopy analysis. 40
Fig. 15. Abraxane enters the CC020T organoids after 8 h treatment using nanodiamond labeling by confocal microscopy analysis.. 41
Fig. 16. Cross-sectional scanning of nanodiamond-labeled Abraxane in CC020T organoids. 42
Fig. 17. The model of Abraxane-induced disruption and apoptosis by opposite expression of p53 and survivin. 43
7. Appendixes 44
Appendix 1. The rate of the most common malignancy morbidity and mortality in the world. 44
Appendix 2. The multiple steps and mutations in CRC progression. 45
Appendix 3. The structure of normal organoid and cancer organoid on 3D condition. 46
Appendix 4. Cancer stem cell in cancer therapy. 47
1. Testa, U., Pelosi, E. & Castelli, G. "Colorectal cancer: genetic abnormalities, tumor progression, tumor heterogeneity, clonal evolution and tumor-initiating cells". Medical Sciences, 6, p.31, 2018.
2. Zhang, L. & Shay, J.W. "Multiple Roles of APC and its Therapeutic Implications in Colorectal Cancer". J Natl Cancer Inst, 109, 2017.
3. de Freitas Junior, J.C.M. & Morgado-Díaz, J.A. "The role of N-glycans in colorectal cancer progression: Potential biomarkers and therapeutic applications". Oncotarget, 7, p.19395, 2016.
4. Sobin, L.H. & Fleming, I.D. "TNM classification of malignant tumors, (1997)". Cancer: Interdisciplinary International Journal of the American Cancer Society, 80, p.1803-1804, 1997.
5. Loeffler, A.G. & Hart, M.N. Introduction to Human Disease (book), Jones & Bartlett Publishers, 2014.
6. Sobin, L.H., Gospodarowicz, M.K. & Wittekind, C. TNM classification of malignant tumours, John Wiley & Sons, 2011.
7. Mishra, J. et al. "Prospective of colon cancer treatments and scope for combinatorial approach to enhanced cancer cell apoptosis". Critical reviews in oncology/hematology, 86, p.232-250, 2013.
8. Edmondson, R., Broglie, J.J., Adcock, A.F. & Yang, L. "Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors". Assay and drug development technologies, 12, p.207-218, 2014.
9. Xu, H. et al. "Organoid technology and applications in cancer research". Journal of hematology & oncology, 11, p.116, 2018.
10. Zhou, J., Su, J., Fu, X., Zheng, L. & Yin, Z. "Microfluidic device for primary tumor spheroid isolation". Experimental hematology & oncology, 6, p.22, 2017.
11. Rausch, M. & Peker, B. "Bridging the gap between high-resolution live cell microscopy and 3D cellular models: A breakthrough method". 2020.
12. Drost, J. & Clevers, H. "Organoids in cancer research". Nature Reviews Cancer, 18, p.407-418, 2018.
13. Ohta, Y. & Sato, T. "Intestinal tumor in a dish". Frontiers in medicine, 1, p.14, 2014.
14. Baccelli, I. & Trumpp, A. "The evolving concept of cancer and metastasis stem cells". Journal of Cell Biology, 198, p.281-293, 2012.
15. Beck, B. & Blanpain, C. "Unravelling cancer stem cell potential". Nature Reviews Cancer, 13, p.727, 2013.
16. Phi, L.T.H. et al. "Cancer stem cells (CSCs) in drug resistance and their therapeutic implications in cancer treatment". Stem cells international, 2018, 2018.
17. Wuputra, K. et al. "Prevention of tumor risk associated with the reprogramming of human pluripotent stem cells". Journal of Experimental & Clinical Cancer Research, 39, p.1-24, 2020.
18. Basakran, N.S. "CD44 as a potential diagnostic tumor marker". Saudi medical journal, 36, p.273, 2015.
19. Orian-Rousseau, V. "CD44, a therapeutic target for metastasising tumours". European journal of cancer, 46, p.1271-1277, 2010.
20. Catalano, V. et al. "CD133 as a target for colon cancer". Expert opinion on therapeutic targets, 16, p.259-267, 2012.
21. Barker, N. et al. "Identification of stem cells in small intestine and colon by marker gene Lgr5". Nature, 449, p.1003-1007, 2007.
22. Hatefi, N., Nouraee, N., Parvin, M., Ziaee, S.-A.M. & Mowla, S.J. "Evaluating the expression of oct4 as a prognostic tumor marker in bladder cancer". Iranian journal of basic medical sciences, 15, p.1154, 2012.
23. Wang, D. et al. "Oct-4 and Nanog promote the epithelial-mesenchymal transition of breast cancer stem cells and are associated with poor prognosis in breast cancer patients". Oncotarget, 5, p.10803, 2014.
24. Mani, S.A. et al. "The epithelial-mesenchymal transition generates cells with properties of stem cells". Cell, 133, p.704-715, 2008.
25. Fiorini, E., Veghini, L. & Corbo, V. "Modeling cell communication in cancer with organoids: making the complex simple". Frontiers in Cell and Developmental Biology, 8, 2020.
26. Zhao, W., Li, Y. & Zhang, X. "Stemness-related markers in cancer". Cancer translational medicine, 3, p.87, 2017.
27. Elmore, S. "Apoptosis: a review of programmed cell death". Toxicologic pathology, 35, p.495-516, 2007.
28. Aubrey, B.J., Strasser, A. & Kelly, G.L. "Tumor-suppressor functions of the TP53 pathway". Cold Spring Harbor perspectives in medicine, 6, p.a026062, 2016.
29. Aubrey, B.J., Kelly, G.L., Janic, A., Herold, M.J. & Strasser, A. "How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression?". Cell Death & Differentiation, 25, p.104-113, 2018.
30. Marine, J.-C. & Lozano, G. "MDM2 -mediated ubiquitylation: p53 and beyond". Cell Death & Differentiation, 17, p.93-102, 2010.
31. Abbas, T. & Dutta, A. "p21 in cancer: intricate networks and multiple activities". Nature Reviews Cancer, 9, p.400-414, 2009.
32. Chen, J. "The cell-cycle arrest and apoptotic functions of p53 in tumor initiation and progression". Cold Spring Harbor perspectives in medicine, 6, p.a026104, 2016.
33. Qin, J.-J. et al. "Natural products targeting the p53-MDM2 pathway and mutant p53: Recent advances and implications in cancer medicine". Genes & diseases, 5, p.204-219, 2018.
34. ter Huurne, M. et al. "Critical role for P53 in regulating the cell cycle of ground state embryonic stem cells". Stem cell reports, 14, p.175-183, 2020.
35. Kim, A., Lee, S.-Y., Seo, C.-S. & Chung, S.-K. "Prunellae Spica Extract Suppresses Teratoma Formation of Pluripotent Stem Cells through p53-Mediated Apoptosis". Nutrients, 12, p.721, 2020.
36. Pistritto, G., Trisciuoglio, D., Ceci, C., Garufi, A. & D'Orazi, G. "Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies". Aging (Albany NY), 8, p.603, 2016.
37. Kalkavan, H. & Green, D.R. "MOMP, cell suicide as a BCL-2 family business". Cell Death & Differentiation, 25, p.46-55, 2018.
38. Shamas-Din, A., Kale, J., Leber, B. & Andrews, D.W. "Mechanisms of action of Bcl-2 family proteins". Cold Spring Harbor perspectives in biology, 5, p.a008714, 2013.
39. Westphal, D., Dewson, G., Czabotar, P.E. & Kluck, R.M. "Molecular biology of Bax and Bak activation and action". Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1813, p.521-531, 2011.
40. Bratton, S.B. & Salvesen, G.S. "Regulation of the Apaf-1–caspase-9 apoptosome". Journal of cell science, 123, p.3209-3214, 2010.
41. Ambrosini, G., Adida, C. & Altieri, D.C. "A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma". Nature medicine, 3, p.917-921, 1997.
42. Jaiswal, P.K., Goel, A. & Mittal, R. "Survivin: A molecular biomarker in cancer". The Indian journal of medical research, 141, p.389, 2015.
43. Chen, X., Duan, N., Zhang, C. & Zhang, W. "Survivin and tumorigenesis: molecular mechanisms and therapeutic strategies". Journal of Cancer, 7, p.314, 2016.
44. Chiou, S.-K., Jones, M.K. & Tarnawski, A.S. "Survivin-an anti-apoptosis protein: its biological roles and implications for cancer and beyond". Medical Science Monitor, 9, p.PI25-PI29, 2003.
45. Fridman, J.S. & Lowe, S.W. "Control of apoptosis by p53". Oncogene, 22, p.9030-9040, 2003.
46. Mirza, A. et al. "Human survivin is negatively regulated by wild-type p53 and participates in p53-dependent apoptotic pathway". Oncogene, 21, p.2613-2622, 2002.
47. Wang, Z., Fukuda, S. & Pelus, L.M. "Survivin regulates the p53 tumor suppressor gene family". Oncogene, 23, p.8146-8153, 2004.
48. Barbuti, A.M. & Chen, Z.-S. "Paclitaxel through the ages of anticancer therapy: exploring its role in chemoresistance and radiation therapy". Cancers, 7, p.2360-2371, 2015.
49. Yuan, H. et al. "Albumin Nanoparticle of Paclitaxel (Abraxane) Decreases while Taxol Increases Breast Cancer Stem Cells in Treatment of Triple Negative Breast Cancer". Molecular Pharmaceutics, 2020.
50. Mukhtar, E., Adhami, V.M. & Mukhtar, H. "Targeting microtubules by natural agents for cancer therapy". Molecular cancer therapeutics, 13, p.275-284, 2014.
51. Yang, C.-P.H. & Horwitz, S.B. "Taxol®: the first microtubule stabilizing agent". International journal of molecular sciences, 18, p.1733, 2017.
52. Lungu, II, Grumezescu, A.M., Volceanov, A. & Andronescu, E. "Nanobiomaterials Used in Cancer Therapy: An Up-To-Date Overview". Molecules, 24, 2019.
53. Lombardo, D., Kiselev, M.A. & Caccamo, M.T. "Smart nanoparticles for drug delivery application: development of versatile nanocarrier platforms in biotechnology and nanomedicine". Journal of Nanomaterials, 2019, 2019.
54. Ullah, R. et al. "Factors Influencing the Delivery Efficiency of Cancer Nanomedicines". AAPS PharmSciTech, 21, p.132, 2020.
55. Chenthamara, D. et al. "Therapeutic efficacy of nanoparticles and routes of administration". Biomaterials Research, 23, p.1-29, 2019.
56. Ma, P. & Mumper, R.J. "Paclitaxel nano-delivery systems: a comprehensive review". Journal of nanomedicine & nanotechnology, 4, p.1000164, 2013.
57. Langer, C.J., Mok, T. & Postmus, P.E. "Targeted agents in the third-/fourth-line treatment of patients with advanced (stage III/IV) non-small cell lung cancer (NSCLC)". Cancer treatment reviews, 39, p.252-260, 2013.
58. Chen, Y.-J. et al. "impacts of intralipid on nanodrug Abraxane therapy and on the innate immune System". Scientific reports, 10, p.1-11, 2020.
59. Lee, T.C. " Role of Haspin in human colorectal cancer using three-dimensionaltissue culture model. ". National Chiao Tung University, Master Thesis, 2017.
60. Yu, T.W. " Role of CD133 and LGR5 in colorectal cancer organoids formation using enzymatic decomposition method and three-dimensional tissue culture. ". National Chiao Tung University. Master thesis, 2018.
61. Lee, Y.T. "Expression of CD133 and E-cadherin in the formation of human colorectal cancer organoids". National Chiao Tung University. Master thesis, 2019.
62. Xiao, X. et al. "The Anti-Tumor Effect of Nab-Paclitaxel Proven by Patient-Derived Organoids". OncoTargets and therapy, 13, p.6017, 2020.
63. Beck, B. & Blanpain, C. "Unravelling cancer stem cell potential". Nature Reviews Cancer, 13, p.727-738, 2013.
64. Eguchi, T. et al. "Organoids with cancer stem cell-like properties secrete exosomes and HSP90 in a 3D nanoenvironment". PLoS One, 13, p.e0191109, 2018.
65. Iglesias, J. "nab-Paclitaxel (Abraxane®): an albumin-bound cytotoxic exploiting natural delivery mechanisms into tumors". Breast Cancer Research, 11, p.1-1, 2009.
66. Tian, X. et al. "E-cadherin/β-catenin complex and the epithelial barrier". Journal of Biomedicine and Biotechnology, 2011, 2011.
67. Wijnhoven, B., Dinjens, W. & Pignatelli, M. "E-cadherin–catenin cell–cell adhesion complex and human cancer". British Journal of Surgery, 87, p.992-1005, 2000.
68. Doucas, H., Garcea, G., Neal, C., Manson, M. & Berry, D. "Changes in the Wnt signalling pathway in gastrointestinal cancers and their prognostic significance". European journal of cancer, 41, p.365-379, 2005.
69. Beauchemin, N. & Arabzadeh, A. "Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) in cancer progression and metastasis". Cancer and Metastasis Reviews, 32, p.643-671, 2013.
70. Narayanan, V. & Weekes, C.D. "Nanoparticle albumin-bound (nab)-paclitaxel for the treatment of pancreas ductal adenocarcinoma". Gastrointestinal Cancer: Targets and Therapy, 5, p.11, 2015.
71. Khongkow, P. et al. "Paclitaxel targets FOXM1 to regulate KIF20A in mitotic catastrophe and breast cancer paclitaxel resistance". Oncogene, 35, p.990-1002, 2016.
72. Isham, C.R. et al. "Pazopanib enhances paclitaxel-induced mitotic catastrophe in anaplastic thyroid cancer". Science translational medicine, 5, p.166ra3-166ra3, 2013.
73. Hientz, K., Mohr, A., Bhakta-Guha, D. & Efferth, T. "The role of p53 in cancer drug resistance and targeted chemotherapy". Oncotarget, 8, p.8921, 2017.
74. Wang, X. et al. "Cell-cycle synchronization reverses Taxol resistance of human ovarian cancer cell lines". Cancer cell international, 13, p.77, 2013.
75. Demidenko, Z. et al. "Mechanism of G1-like arrest by low concentrations of paclitaxel: next cell cycle p53-dependent arrest with sub G1 DNA content mediated by prolonged mitosis". Oncogene, 27, p.4402-4410, 2008.
76. Guntur, V.P., Waldrep, J.C., Guo, J.J., Selting, K. & Dhand, R. "Increasing p53 protein sensitizes non-small cell lung cancer to paclitaxel and cisplatin in vitro". Anticancer research, 30, p.3557-3564, 2010.
77. Park, E. et al. "Transcriptional repression of cancer stem cell marker CD133 by tumor suppressor p53". Cell death & disease, 6, p.e1964-e1964, 2015.
78. Barzegar Behrooz, A., Syahir, A. & Ahmad, S. "CD133: beyond a cancer stem cell biomarker". Journal of drug targeting, 27, p.257-269, 2019.
79. Chen, X. et al. "p53 positively regulates the expression of cancer stem cell marker CD133 in HCT116 colon cancer cells". Oncology Letters, 16, p.431-438, 2018.
80. Szaryńska, M., Olejniczak, A., Kobiela, J., Spychalski, P. & Kmieć, Z. "Therapeutic strategies against cancer stem cells in human colorectal cancer". Oncology Letters, 14, p.7653-7668, 2017.
81. Li, W., Lee, M.-R., Choi, E. & Cho, M.-Y. "Clinicopathologic significance of survivin expression in relation to CD133 expression in surgically resected stage II or III colorectal cancer". Journal of pathology and translational medicine, 51, p.17, 2017.
82. Li, D., Hu, C. & Li, H. "Survivin as a novel target protein for reducing the proliferation of cancer cells". Biomedical reports, 8, p.399-406, 2018.
83. Lee, M.-R., Ji, S.-Y., Mia-Jan, K. & Cho, M.-Y. "Chemoresistance of CD133+ colon cancer may be related with increased survivin expression". Biochemical and biophysical research communications, 463, p.229-234, 2015.
84. Chauhan, S., Jain, N. & Nagaich, U. "Nanodiamonds with powerful ability for drug delivery and biomedical applications: Recent updates on in vivo study and patents". Journal of pharmaceutical analysis, 10, p.1-12, 2020.
85. Liu, K.-K., Cheng, C.-L., Chang, C.-C. & Chao, J.-I. "Biocompatible and detectable carboxylated nanodiamond on human cell". Nanotechnology, 18, p.325102, 2007.
86. Havlik, J. et al. "Boosting nanodiamond fluorescence: towards development of brighter probes". Nanoscale, 5, p.3208-3211, 2013.
87. Liu, K.-K. et al. "Ubiquitin-coated nanodiamonds bind to autophagy receptors for entry into the selective autophagy pathway". autophagy, 13, p.187-200, 2017.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊