跳到主要內容

臺灣博碩士論文加值系統

(44.211.239.1) 您好!臺灣時間:2023/01/31 06:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:呂義翔
研究生(外文):Lu, Yi-Xiang
論文名稱:開發快速高靈敏度偵測腸病毒71型與新型冠狀病毒受體結合區域棘蛋白質之電化學感測電極
論文名稱(外文):Development of rapid and sensitive biosensing probes for Enterovirus 71 and SARS-CoV 2 spike protein receptor-binding domain detection by electrochemical impedance spectroscopy
指導教授:張家靖
指導教授(外文):Chang, Chia-Ching
口試委員:楊志元袁俊傑張家靖
口試委員(外文):Yang, Jyh-YuanYuan, Chiun-JyeChang, Chia-Ching
口試日期:2020-08-28
學位類別:碩士
校院名稱:國立交通大學
系所名稱:分子醫學與生物工程研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2020
畢業學年度:109
語文別:中文
論文頁數:84
中文關鍵詞:電化學阻抗譜奈米鈀薄膜探針病毒偵測
外文關鍵詞:electrochemical impedance spectroscopypalladium nano-thin film probevirus detection
相關次數:
  • 被引用被引用:0
  • 點閱點閱:86
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
腸病毒71型曾經在台灣爆發多次疫情,造成數以千計人感染,而此時新型冠狀病毒(coronavirus)大流行並影響全球公共衛生。由於在病毒早期診斷中,傳統的偵測方法如細胞培養和PCR核酸檢測法較耗時,腸病毒71型和新型冠狀病毒都具有高傳染性,且新冠病毒尚未研發出疫苗,因此在本研究中,我們開發針對腸病毒71型與新型冠狀病毒的快速高靈敏度電化學感測鈀電極。
我們的成果顯示,感測鈀電極可以在15分鐘內區分腸病毒71型和克沙奇A16(Coxsackievirus A16),其偵測極限可達單分子層次;此外,新冠病毒感測探針能在30分鐘內偵測新型冠狀病毒受體結合區域棘蛋白質的接合,其偵測極限可達數百nM以下。我們建立電化學阻抗頻譜的病毒偵測平台能提供一個新型的腸病毒71型和新型冠狀病毒偵測方法。
Enterovirus 71 outbreaks frequently in Taiwan. Thousands of children have been infected yearly. Recently, COVID-19 pandemic is affecting global public health severely. These two infectious diseases are highly contagious and COVID-19 do not have vaccines yet. Conventional detection approaches, such as cell culture and RT-PCR processes are time-consuming those cannot be used on site. We have developed a functionalized Electrochemical impedance spectroscopy (EIS) sensing nano-thin film palladium probes that can detect viruses rapidly and sensitively. Our results showed that the functionalized probes can distinguish EV71 from Coxsackievirus A16 (CVA16) and the limit of detection is about single molecule level in 15 min. Furthermore, the other functionalized probes can bind SARS-CoV 2 spike protein receptor-binding domain in 30 min directly. The limit of detection is about sub micro molar. We established the EIS detection model that provide a potential method to diagnose EV71 and coronavirus.
摘要 i
致謝 iii
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1研究背景 1
1.1.1研究動機 1
1.1.2病毒 1
1.1.3感染途徑 3
1.1.4病毒的治療與預防 5
1.1.5病毒偵測 5
1.2本研究偵測的病毒-腸病毒 7
1.2.1腸病毒介紹 7
1.2.2感染途徑 8
1.2.3臨床症狀 8
1.2.4流行病學 9
1.2.5腸病毒偵測 10
1.3本研偵測的病毒-新型冠狀病毒 11
1.3.1新冠病毒介紹 11
1.3.2感染途徑 13
1.3.3病徵 13
1.3.4流行病學 14
1.3.5新冠病毒偵測 15
1.4生物感測器 16
1.4.1生物感測器的發展 16
1.4.2生物感測器的重要性 17
第二章 研究策略 19
2.1實驗設計 19
2.2電化學偵測流程 21
第三章 材料與方法 22
3.1實驗材料 22
3.1.1電化學溶液配置 23
3.2目標蛋白質製備 24
3.2.1 IPTG誘導蛋白質大量表現 24
3.2.2蛋白質重摺疊 24
3.3蛋白質物理特性分析 26
3.3.1動態光散射粒徑分析 26
3.3.2蛋白質表面電位分析 27
3.3.3圓二色光譜與蛋白質二級結構 27
3.4 蛋白質接合能力試驗 28
3.5 電化學感測 28
3.5.1 循環伏安法(Cyclic voltammetry, CV) 28
3.5.2 電化學阻抗頻譜 30
3.6實驗設備 32
3.6.1電化學測量系統 32
3.6.2電極製備 32
3.6.3工作電極原理與製備 33
3.6.4參考電極 33
3.6.5輔助電極 34
第四章 實驗結果 35
4.1 腸病毒接合蛋白開發 35
4.1.1腸病毒VP1之鍵結蛋白序列 35
4.1.2腸病毒外殼蛋白rVP1表現 35
4.1.3 rEVBP蛋白之表現 37
4.2 蛋白質物化特性分析 39
4.2.1 蛋白質粒徑大小分析 39
4.2.1.1 rVP1粒徑分析 39
4.2.1.2 rEVBP粒徑分析 40
4.2.2 表面電位檢測 40
4.2.3 二級結構分析 41
4.3 EVBP與VP1接合能力檢測 44
4.3.1 ELISA分析rEVBP與rVP1之接合 44
4.3.2 Dot blot分析rEVBP與rVP1之接合 45
4.4 腸病毒的電化學偵測 47
4.4.1 rEVBP與鈀電極的接合 47
4.4.2 rEVBP修飾電極偵測rVP1 49
4.4.3 rEVBP修飾電極偵測BSA、Lysozyme 51
4.4.4 rEVBP修飾電極偵測腸病毒71型 52
4.5 新冠病毒偵測電極開發的蛋白質表現與純化 54
4.5.1新型冠狀病毒受體結合區域棘蛋白的表現與純化 54
4.5.2新冠病毒受體ACE2的表現與純化 55
4.6 ACE2受體與spike RBD的二級結構分析 57
4.7 ACE2與spike RBD接合能力檢測 59
4.7.1 ELISA分析ACE2與spike之接合 59
4.7.2 Dot blot分析ACE2與spike RBD之接合 60
4.8 新冠病毒的電化學偵測 62
4.8.1 ACE2與鈀電極的接合 62
4.8.2 ACE2修飾電極偵測spike RBD 63
4.8.3 ACE2修飾電極偵測BSA、Lysozyme 65
第五章 討論 67
5.1鈀電極修飾 67
5.2病毒蛋白之代表性 67
5.3 腸病毒蛋白rVP1的聚集 68
5.4 電化學偵測腸病毒之可行性 68
5.5電化學偵測新冠病毒之可能性 70
第六章 結論 71
第七章 參考文獻 72
第八章 附錄 83
[1] M. Adrian, J. Dubochet, J. Lepault, A.W. McDowall, Cryo-electron microscopy of viruses, Nature, 1984, 308, 32-36.
[2] N.G. Abrescia, J.M. Grimes, H.M. Kivelä, R. Assenberg, G.C. Sutton, S.J. Butcher, J.K. Bamford, D.H. Bamford, D.I. Stuart, Insights into virus evolution and membrane biogenesis from the structure of the marine lipid-containing bacteriophage PM2, Mol Cell, 2008, 31, 749-761.
[3] F. Wang, Y. Liu, Z. Su, T. Osinski, G.A.P. de Oliveira, J.F. Conway, S. Schouten, M. Krupovic, D. Prangishvili, E.H. Egelman, A packing for A-form DNA in an icosahedral virus, Proc Natl Acad Sci U S A, 2019, 116, 22591-22597.
[4] P. Lefeuvre, D.P. Martin, S.F. Elena, D.N. Shepherd, P. Roumagnac, A. Varsani, Evolution and ecology of plant viruses, Nat Rev Microbiol, 2019, 17, 632-644.
[5] J.T. Ladner, M.R. Wiley, B. Beitzel, A.J. Auguste, A.P. Dupuis, M.E. Lindquist, S.D. Sibley, K.P. Kota, D. Fetterer, G. Eastwood, D. Kimmel, K. Prieto, H. Guzman, M.T. Aliota, D. Reyes, E.E. Brueggemann, L. St John, D. Hyeroba, M. Lauck, T.C. Friedrich, D.H. O'Connor, M.C. Gestole, L.H. Cazares, V.L. Popov, F. Castro-Llanos, T.J. Kochel, T. Kenny, B. White, M.D. Ward, J.R. Loaiza, T.L. Goldberg, S.C. Weaver, L.D. Kramer, R.B. Tesh, G. Palacios, A multicomponent animal virus isolated from nosquitoes, Cell Host Microbe, 2016, 20, 357-367.
[6] X. Sewald, N. Motamedi, W. Mothes, Viruses exploit the tissue physiology of the host to spread in vivo, Curr Opin Cell Biol, 2016, 41, 81-90.
[7] S. Pennazio, P. Roggero, The discovery of the chemical nature of tobacco mosaic virus, Riv Biol, 2000, 93, 253-281.
[8] J. Jeevanandam, K. Pal, M.K. Danquah, Virus-like nanoparticles as a novel delivery tool in gene therapy, Biochimie, 2019, 157, 38-47.
[9] P.A. Levin, E.R. Angert, Small but mighty: cell size and bacteria, Cold Spring Harb Perspect Biol, 2015, 7, a019216.
[10] G. Widmer, Suppression of Leishmania RNA virus replication by capsid protein overexpression, J Virol, 1995, 69, 4122-4126.
[11] M.G. Rossmann, Structure of viruses: a short history, Q Rev Biophys, 2013, 46, 133-180.
[12] D. Morens, G. Folkers, A. Fauci, The challenge of emerging and re–emerging infectious diseases, Nature, 2004, 430, 242-249.
[13] L.Y. Chang, Enterovirus 71 in Taiwan, Pediatr Neonatol, 2008, 49, 103-112.
[14] E.C. Hutchinson, Influenza virus, Trends Microbiol, 2018, 26, 809-810.
[15] D. Sauter, F. Kirchhoff, Key viral adaptations preceding the AIDS pandemic, Cell Host Microbe, 2019, 25, 27-38.
[16] S.J. Lycett, F. Duchatel, P. Digard, A brief history of bird flu, Philos Trans R Soc Lond B Biol Sci, 2019, 374, rstb.2018.0257.
[17] Y. Zhang, O.K. Dudko, Statistical mechanics of viral entry, Phys Rev Lett, 2015, 114, 018104.
[18] S. Barman, A. Ali, E.K. Hui, L. Adhikary, D.P. Nayak, Transport of viral proteins to the apical membranes and interaction of matrix protein with glycoproteins in the assembly of influenza viruses, Virus Res, 2001, 77, 61-69.
[19] J.S. Rossman, R.A. Lamb, Influenza virus assembly and budding, Virology, 2011, 411, 229-236.
[20] B.S. Chen, Structure and function of apolipoprotein and prevention and therapy of virus diseases, Acta Academiae Medicinae Sinica, 2007, 29, 448-451.
[21] D.Y. Lu, T.R. Lu, J.Y. Che, H.Y. Wu, B. Xu, New perspectives of HIV/AIDS therapy study, Recent Pat Antiinfect Drug Discov, 2014, 9, 112-120.
[22] Y. Zhang, S. Qu, L. Xu, Progress in the study of virus detection methods: The possibility of alternative methods to validate virus inactivation, Biotechnol Bioeng, 2019, 116, 2095-2102.
[23] O. Meurman, P. Hänninen, R.V. Krishna, T. Ziegler, Determination of IgG- and IgM-class antibodies to mumps virus by solid-phase enzyme immunoassay, J Virol Methods, 1982, 4, 249-256.
[24] P. Ukkonen, O. Väisänen, K. Penttinen, Enzyme-linked immunosorbent assay for mumps and parainfluenza type 1 immunoglobulin G and immunoglobulin M antibodies, J Clin Microbiol, 1980, 11, 319-323.
[25] F. Condorelli, T. Ziegler, Dot immunobinding assay for simultaneous detection of specific immunoglobulin G antibodies to measles virus, mumps virus, and rubella virus, J Clin Microbiol, 1993, 31, 717-719.
[26] I.M. Artika, A. Wiyatno, C.N. Ma'roef, Pathogenic viruses: Molecular detection and characterization, Infect Genet Evol, 2020, 81, j.meegid.2020.104215.
[27] S.F. Hawkins, P.C. Guest, Multiplex Analyses Using Real-Time Quantitative PCR, Methods Mol Biol, 2017, 1546, 125-133.
[28] I. Stock, [Hand, foot and mouth disease--more than a harmless "childhood disease"], Med Monatsschr Pharm, 2014, 37, 4-10.
[29] T. Solomon, P. Lewthwaite, D. Perera, M.J. Cardosa, P. McMinn, M.H. Ooi, Virology, epidemiology, pathogenesis, and control of enterovirus 71, Lancet Infect Dis, 2010, 10, 778-790.
[30] M. Ho, Enterovirus 71: the virus, its infections and outbreaks, J Microbiol Immunol Infect, 2000, 33, 205-216.
[31] G. Gonzalez, M.J. Carr, M. Kobayashi, N. Hanaoka, T. Fujimoto, Enterovirus-associated hand-foot and mouth disease and neurological complications in japan and the rest of the world, Int J Mol Sci, 2019, 20, 5201.
[32] J.O. Cifuente, H. Lee, J.D. Yoder, K.L. Shingler, M.S. Carnegie, J.L. Yoder, R.E. Ashley, A.M. Makhov, J.F. Conway, S. Hafenstein, Structures of the procapsid and mature virion of enterovirus 71 strain 1095, J Virol, 2013, 87, 7637-7645.
[33] H.I. Huang, S.R. Shih, Neurotropic enterovirus infections in the central nervous system, Viruses, 2015, 7, 6051-6066.
[34] A. Saguil, S.F. Kane, R. Lauters, M.G. Mercado, Hand-foot-and-mouth disease: rapid evidence review, Am Fam Physician, 2019, 100, 408-414.
[35] Y.K. Chang, K.H. Chen, K.T. Chen, Hand, foot and mouth disease and herpangina caused by enterovirus A71 infections: a review of enterovirus A71 molecular epidemiology, pathogenesis, and current vaccine development, Rev Inst Med Trop Sao Paulo, 2018, 60, e70.
[36] M.Y. Liu, W. Liu, J. Luo, Y. Liu, Y. Zhu, H. Berman, J. Wu, Characterization of an outbreak of hand, foot, and mouth disease in Nanchang, China in 2010, PLoS One, 2011, 6, e25287.
[37] M.Y. Chia, P.S. Chiang, W.Y. Chung, S.T. Luo, M.S. Lee, Epidemiology of enterovirus 71 infections in Taiwan, Pediatr Neonatol, 2014, 55, 243-249.
[38] S.Y. Wang, T.L. Lin, H.Y. Chen, T.S. Lin, Early and rapid detection of enterovirus 71 infection by an IgM-capture ELISA, J Virol Methods, 2004, 119, 37-43.
[39] B.A. Prabowo, R.Y.L. Wang, M.K. Secario, P.T. Ou, A. Alom, J.J. Liu, K.C. Liu, Rapid detection and quantification of Enterovirus 71 by a portable surface plasmon resonance biosensor, Biosens Bioelectron, 2017, 92, 186-191.
[40] B.A. Brown, D.R. Kilpatrick, M.S. Oberste, M.A. Pallansch, Serotype-specific identification of enterovirus 71 by PCR, J Clin Virol, 2000, 16, 107-112.
[41] T. Nolan, R.E. Hands, S.A. Bustin, Quantification of mRNA using real-time RT-PCR, Nat Protoc, 2006, 1, 1559-1582.
[42] Y.F. Tu, C.S. Chien, A.A. Yarmishyn, Y.Y. Lin, Y.H. Luo, Y.T. Lin, W.Y. Lai, D.M. Yang, S.J. Chou, Y.P. Yang, M.L. Wang, S.H. Chiou, A review of SARS-CoV-2 and the ongoing clinical trials, Int J Mol Sci, 2020, 21, 2657.
[43] S. Ludwig, A. Zarbock, Coronaviruses and SARS-CoV-2: A brief overview, Anesth Analg, 2020, 131, 93-96.
[44] C.C. Lai, Y.H. Liu, C.Y. Wang, Y.H. Wang, S.C. Hsueh, M.Y. Yen, W.C. Ko, P.R. Hsueh, Asymptomatic carrier state, acute respiratory disease, and pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): Facts and myths, J Microbiol Immunol Infect, 2020, 53, 404-412.
[45] N. Irigoyen, A.E. Firth, J.D. Jones, B.Y. Chung, S.G. Siddell, I. Brierley, High-resolution analysis of coronavirus gene expression by RNA sequencing and ribosome profiling, PLoS Pathog, 2016, 12, e1005473.
[46] A.A. Rabaan, S.H. Al-Ahmed, S. Haque, R. Sah, R. Tiwari, Y.S. Malik, K. Dhama, M.I. Yatoo, D.K. Bonilla-Aldana, A.J. Rodriguez-Morales, SARS-CoV-2, SARS-CoV, and MERS-COV: A comparative overview, Infez Med, 2020, 28, 174-184.
[47] E.Y. Peng, M.B. Lee, S.T. Tsai, C.C. Yang, D.E. Morisky, L.T. Tsai, Y.L. Weng, S.Y. Lyu, Population-based post-crisis psychological distress: an example from the SARS outbreak in Taiwan, J Formos Med Assoc, 2010, 109, 524-532.
[48] W.K. Lam, N.S. Zhong, W.C. Tan, Overview on SARS in Asia and the world, Respirology, 2003, 8 Suppl, S2-S5.
[49] A.C. Walls, Y.J. Park, M.A. Tortorici, A. Wall, A.T. McGuire, D. Veesler, Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein, Cell, 2020, 181, 281-292.
[50] X. Ou, Y. Liu, X. Lei, P. Li, D. Mi, L. Ren, L. Guo, R. Guo, T. Chen, J. Hu, Z. Xiang, Z. Mu, X. Chen, J. Chen, K. Hu, Q. Jin, J. Wang, Z. Qian, Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV, Nat Commun, 2020, 11, s41467-41020-15562-41469.
[51] A. Chafekar, B.C. Fielding, MERS-CoV: Understanding the latest Human coronavirus threat, Viruses, 2018, 10, 93.
[52] Y. Yin, R.G. Wunderink, MERS, SARS and other coronaviruses as causes of pneumonia, Respirology, 2018, 23, 130-137.
[53] S. Kannan, P. Shaik Syed Ali, A. Sheeza, K. Hemalatha, COVID-19 (Novel coronavirus 2019) - recent trends, Eur Rev Med Pharmacol Sci, 2020, 24, 2006-2011.
[54] J. Lan, J. Ge, J. Yu, S. Shan, H. Zhou, S. Fan, Q. Zhang, X. Shi, Q. Wang, L. Zhang, X. Wang, Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor, Nature, 2020, 581, 215-220.
[55] W. Song, M. Gui, X. Wang, Y. Xiang, Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2, PLoS Pathog, 2018, 14, e1007236.
[56] S.F. Wang, S.P. Tseng, C.H. Yen, J.Y. Yang, C.H. Tsao, C.W. Shen, K.H. Chen, F.T. Liu, W.T. Liu, Y.M. Chen, J.C. Huang, Antibody-dependent SARS coronavirus infection is mediated by antibodies against spike proteins, Biochem Biophys Res Commun, 2014, 451, 208-214.
[57] J. Brown, C. Pope, Personal protective equipment and possible routes of airborne spread during the COVID-19 pandemic, Anaesthesia, 2020, 75, 1116-1117.
[58] F.J. Carod-Artal, Neurological complications of coronavirus and COVID-19, Rev Neurol, 2020, 70, 311-322.
[59] L. Zhong, J. Chuan, B. Gong, P. Shuai, Y. Zhou, Y. Zhang, Z. Jiang, D. Zhang, X. Liu, S. Ma, Y. Huang, H. Lin, Q. Wang, L. Huang, D. Jiang, F. Hao, J. Tang, C. Zheng, H. Yu, Z. Wang, Q. Jiang, T. Zeng, M. Luo, F. Zeng, F. Zeng, J. Liu, J. Tian, Y. Xu, T. Long, K. Xu, X. Yang, Y. Liu, Y. Shi, L. Jiang, Z. Yang, Detection of serum IgM and IgG for COVID-19 diagnosis, Sci China Life Sci, 2020, 63, 777-780.
[60] J. Won, S. Lee, M. Park, T.Y. Kim, M.G. Park, B.Y. Choi, D. Kim, H. Chang, V.N. Kim, C.J. Lee, Development of a laboratory-safe and low-cost detection protocol for SARS-CoV-2 of the coronavirus disease 2019 (COVID-19), Exp Neurobiol, 2020, 29, 107-119.
[61] Y. Liu, A.A. Gayle, A. Wilder-Smith, J. Rocklöv, The reproductive number of COVID-19 is higher compared to SARS coronavirus, J Travel Med, 2020, 27, taaa021.
[62] I. Kokkinakis, K. Selby, B. Favrat, B. Genton, J. Cornuz, [Covid-19 diagnosis : clinical recommendations and performance of nasopharyngeal swab-PCR], Rev Med Suisse, 2020, 16, 699-701.
[63] R. Gulaboski, M. Lovrić, V. Mirceski, I. Bogeski, M. Hoth, A new rapid and simple method to determine the kinetics of electrode reactions of biologically relevant compounds from the half-peak width of the square-wave voltammograms, Biophys Chem, 2008, 138, 130-137.
[64] X. Zhou, S. Guo, J. Gao, J. Zhao, S. Xue, W. Xu, Glucose oxidase-initiated cascade catalysis for sensitive impedimetric aptasensor based on metal-organic frameworks functionalized with Pt nanoparticles and hemin/G-quadruplex as mimicking peroxidases, Biosens Bioelectron, 2017, 98, 83-90.
[65] B. Bohunicky, S.A. Mousa, Biosensors: the new wave in cancer diagnosis, Nanotechnol Sci Appl, 2010, 4, 1-10.
[66] S. Neethirajan, V. Ragavan, X. Weng, R. Chand, Biosensors for sustainable food engineering: challenges and perspectives, Biosensors (Basel), 2018, 8, 23.
[67] J. Chen, L. Miao, J.M. Li, Y.Y. Li, Q.Y. Zhu, C.L. Zhou, H.Q. Fang, H.P. Chen, Receptor-binding domain of SARS-Cov spike protein: soluble expression in E. coli, purification and functional characterization, World J Gastroenterol, 2005, 11, 6159-6164.
[68] O. Gileadi, Recombinant protein expression in E. coli : A historical perspective, Methods Mol Biol, 2017, 1586, 3-10.
[69] N.L. Rose, M.M. Palcic, L.M. Helms, J.R. Lakey, Evaluation of pefabloc as a serine protease inhibitor during human-islet isolation, Transplantation, 2003, 75, 462-466.
[70] F. Baneyx, M. Mujacic, Recombinant protein folding and misfolding in Escherichia coli, Nat Biotechnol, 2004, 22, 1399-1408.
[71] G.S. Buchner, R.D. Murphy, N.-V. Buchete, J. Kubelka, Dynamics of protein folding: probing the kinetic network of folding-unfolding transitions with experiment and theory, Biochimica et biophysica acta, 2011, 1814, 1001-1020.
[72] C.-C. Chang, X.-C. Yeh, H.-T. Lee, P.-Y. Lin, L.-S. Kan, Refolding of lysozyme by quasistatic and direct dilution reaction paths: a first-order-like state transition, Phys. Rev. E Stat. Nonlin. Soft Matter Phys, 2004, 70, 011904.
[73] K. Ashizawa, Nanosize particle analysis by dynamic light acattering (DLS), J. Phys. Soc. Japan, 2019, 139, 237-248.
[74] J.D. Clogston, A.K. Patri, Zeta potential measurement, Methods Mol Biol, 2011, 697, 63-70.
[75] N.J. Greenfield, Using circular dichroism spectra to estimate protein secondary structure, Nat Protoc, 2006, 1, 2876-2890.
[76] Y. Wei, A.A. Thyparambil, R.A. Latour, Protein helical structure determination using CD spectroscopy for solutions with strong background absorbance from 190 to 230nm, Biochimica et biophysica acta, 2014, 1844, 2331-2337.
[77] Y.H. Chen, J.T. Yang, A new approach to the calculation of secondary structures of globular proteins by optical rotatory dispersion and circular dichroism, Biochem Biophys Res Commun, 1971, 44, 1285-1291.
[78] W. Qi, Y. Fu, M. Zhao, H. He, X. Tian, L. Hu, Y. Zhang, Electrochemiluminescence resonance energy transfer immunoassay for alkaline phosphatase using p-nitrophenyl phosphate as substrate, Anal Chim Acta, 2020, 1097, 71-77.
[79] R.S. Nicholson, I. Shain, Theory of stationary electrode polarography. Single scan and cyclic methods applied to reversible, irreversible, and kinetic systems, Analytical Chemistry, 1964, 36, 706-723.
[80] P.T. Kissinger, W.R. Heineman, Cyclic voltammetry, Journal of Chemical Education, 1983, 60, 702-706.
[81] A. ter Heijne, O. Schaetzle, S. Gimenez, L. Navarro, B. Hamelers, F. Fabregat-Santiago, Analysis of bio-anode performance through electrochemical impedance spectroscopy, Bioelectrochemistry, 2015, 106, 64-72.
[82] F. Lisdat, D. Schäfer, The use of electrochemical impedance spectroscopy for biosensing, Anal Bioanal Chem, 2008, 391, 1555-1567.
[83] I. Suni, Impedance methods for electrochemical sensors using nanomaterials, Trends in Analytical Chemistry - TrAC, 2008, 27, 604-611.
[84] F. Lisdat, D. Schäfer, The use of electrochemical impedance spectroscopy for biosensing, Anal Bioanal Chem, 2008, 391, 1555-1567.
[85] M. Vojnovic, D. Sepa, Effect of electrode materials on the kinetics of electron exchange reactions, Chem. Phys., 1969, 51, 5344-5351.
[86] M.H. Mashhadizadeh, R.P. Talemi, A new methodology for electrostatic immobilization of a non-labeled single strand DNA onto a self-assembled diazonium modified gold electrode and detection of its hybridization by differential pulse voltammetry, Talanta, 2013, 103, 344-348.
[87] J.E. Prieto, I. Markov, Stranski-Krastanov mechanism of growth and the effect of misfit sign on quantum dots nucleation, Surface Science, 2017, 664, 172-184.
[88] H.L. Skriver, N.M. Rosengaard, Surface energy and work function of elemental metals, Physical Review B, 1992, 46, 7157-7168.
[89] S.M. Foiles, M.I. Baskes, M.S. Daw, Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys, Physical Review B, 1986, 33, 7983-7991.
[90] A.J.B.a.L.R. Faulkner, Electrochemical methods: fundamentals and applications, Russ. J. Electrochem, 2002, 38, 1364-1365.
[91] A. Brajter-Toth, Donald Sawyer, Andrzej Sobkowiak , Julian L. Roberts, Electrochemistry for Chemists, J. Am. Chem. Soc, 1996, 118, 10339-10340.
[92] M. Shi, Y. Zhou, L. Cao, C. Ding, Y. Ji, Q. Jiang, X. Liu, X. Li, X. Hou, H. Peng, W. Shi, Expression of enterovirus 71 capsid protein VP1 in Escherichia coli and its clinical application, Braz J Microbiol, 2013, 44, 1215-1222.
[93] K. Lyu, Y.L. He, H.Y. Li, R. Chen, Crystal structures of yeast-produced Enterovirus 71 and Enterovirus 71/Coxsackievirus A16 chimeric virus-like particles provide the structural basis for novel vaccine design against hand-foot-and-mouth disease, J Virol, 2015, 89, 196-208.
[94] X. Tang, J. Wu, J. Sivaraman, C.L. Hew, Crystal structures of major envelope proteins VP26 and VP28 from white spot syndrome virus shed light on their evolutionary relationship, J Virol, 2007, 81, 6709-6717.
[95] Y. Chen, Y. Guo, Y. Pan, Z. Zhao, Structure analysis of the receptor binding of 2019-nCoV, Biochem Biophys Res Commun, 2020, 525, 135-140.
[96] J. Shang, G. Ye, K. Shi, Y. Wan, C. Luo, H. Aihara, Q. Geng, A. Auerbach, F. Li, Structural basis of receptor recognition by SARS-CoV-2, Nature, 2020, 581, 221-224.
[97] J.C. Love, D.B. Wolfe, R. Haasch, M.L. Chabinyc, K.E. Paul, G.M. Whitesides, R.G. Nuzzo, Formation and structure of self-assembled monolayers of alkanethiolates on palladium, J. Am. Chem. Soc., 2003, 125, 2597-2609.
[98] M.C. Martins, C. Fonseca, M.A. Barbosa, B.D. Ratner, Albumin adsorption on alkanethiols self-assembled monolayers on gold electrodes studied by chronopotentiometry, Biomaterials, 2003, 24, 3697-3706.
[99] C. Majumder, Adsorption of thiols on the Pd(111) surface: a first principles study, Langmuir, 2008, 24, 10838-10842.
[100] R.J. Williams, Self-assembling surfaces, Nature, 1988, 332, 332-393.
[101] E.J. Yi, Y.J. Shin, J.H. Kim, T.G. Kim, S.Y. Chang, Enterovirus 71 infection and vaccines, Clin Exp Vaccine Res, 2017, 6, 4-14.
[102] W. Tai, L. He, X. Zhang, J. Pu, D. Voronin, S. Jiang, Y. Zhou, L. Du, Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine, Cell Mol Immunol, 2020, 17, 613-620.
[103] J. Yuan, L. Shen, J. Wu, X. Zou, J. Gu, J. Chen, L. Mao, Enterovirus A71 proteins: structure and function, Front Microbiol, 2018, 9, fmicb.2018.00286.
[104] H.-Y. Li, S.-H. Tseng, T.-M. Cheng, H.-L. Chu, Y.-N. Lu, F.-Y. Wang, L.-Y. Tsai, J.-Y. Shieh, J.-Y. Yang, C.-C. Juan, L.-C. Tu, C.-C. Chang, Corrigendum: Rapid and highly sensitive detection of Enterovirus 71 by using nanogold-enhanced electrochemical impedance spectroscopy, Nanotechnology, 2013, 24, 399501.
[105] H.L. Skriver, N.M. Rosengaard, Surface energy and work function of elemental metals, Phys Rev B Condens Matter, 1992, 46, 7157-7168.
[106] J.Y. Kim, Y.I. Kim, S.J. Park, I.K. Kim, Y.K. Choi, S.H. Kim, Safe, high-throughput screening of natural compounds of MERS-CoV entry inhibitors using a pseudovirus expressing MERS-CoV spike protein, Int J Antimicrob Agents, 2018, 52, 730-732.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 藥物對新型冠狀病毒棘蛋白受體結合區與血管收縮素轉化酶 II結合能力之影響
2. 應用於人工耳蝸電誘發複合活動電位擷取及電極組織阻抗量測之互補式金氧半類比前端電路之設計
3. 結合準確而高效的化學相似物搜尋引擎以及接觸分佈擬合法來挑選能調控新冠病毒框架轉移效率的FDA老藥以阻殺病毒
4. 水平平板鰭片熱沉自然對流之增益研究
5. 透過學習的擺置優化以減少設計規則違反
6. 用於定位及3D模型重建之基於學習特徵比對
7. 利用交叉環狀連線網路架構與3D堆疊靜態記憶體實現CNN-LSTM神經網路節能加速器
8. 氧化鈀奈米粒子修飾黑磷奈米薄片之合成及其室溫氣體感測之應用
9. 運用DDMRP模式優用庫存水位研究-以A公司為例
10. 應用DBR與線性規劃優化晶圓測試排程
11. 單醣棘蛋白疫苗對SARS-CoV-2病毒及其變異株之保護力研究
12. 以新型冠狀病毒棘突蛋白受體結合區融合大腸桿菌第二型b型忌熱型腸毒素A次單元開發鼻噴型新冠肺炎黏膜疫苗
13. 痘苗病毒與宿主免疫之間的相互作用: 1.Vaccinia virus penetration factor (VPEF)/Fam21在 突細胞對抗白色念珠菌功能的重要性 2. 基於痘苗病毒的疫苗賦予保護性免疫敘利亞倉鼠中的 SARS-CoV-2 病毒。
14. 以桿狀病毒表現載體系統發展冠狀病毒的抗體檢測及疫苗同步產生平台
15. 利用機器學習方法以穿戴式IMU取代測力板評估下蹲跳成效