|
[1] M. Adrian, J. Dubochet, J. Lepault, A.W. McDowall, Cryo-electron microscopy of viruses, Nature, 1984, 308, 32-36. [2] N.G. Abrescia, J.M. Grimes, H.M. Kivelä, R. Assenberg, G.C. Sutton, S.J. Butcher, J.K. Bamford, D.H. Bamford, D.I. Stuart, Insights into virus evolution and membrane biogenesis from the structure of the marine lipid-containing bacteriophage PM2, Mol Cell, 2008, 31, 749-761. [3] F. Wang, Y. Liu, Z. Su, T. Osinski, G.A.P. de Oliveira, J.F. Conway, S. Schouten, M. Krupovic, D. Prangishvili, E.H. Egelman, A packing for A-form DNA in an icosahedral virus, Proc Natl Acad Sci U S A, 2019, 116, 22591-22597. [4] P. Lefeuvre, D.P. Martin, S.F. Elena, D.N. Shepherd, P. Roumagnac, A. Varsani, Evolution and ecology of plant viruses, Nat Rev Microbiol, 2019, 17, 632-644. [5] J.T. Ladner, M.R. Wiley, B. Beitzel, A.J. Auguste, A.P. Dupuis, M.E. Lindquist, S.D. Sibley, K.P. Kota, D. Fetterer, G. Eastwood, D. Kimmel, K. Prieto, H. Guzman, M.T. Aliota, D. Reyes, E.E. Brueggemann, L. St John, D. Hyeroba, M. Lauck, T.C. Friedrich, D.H. O'Connor, M.C. Gestole, L.H. Cazares, V.L. Popov, F. Castro-Llanos, T.J. Kochel, T. Kenny, B. White, M.D. Ward, J.R. Loaiza, T.L. Goldberg, S.C. Weaver, L.D. Kramer, R.B. Tesh, G. Palacios, A multicomponent animal virus isolated from nosquitoes, Cell Host Microbe, 2016, 20, 357-367. [6] X. Sewald, N. Motamedi, W. Mothes, Viruses exploit the tissue physiology of the host to spread in vivo, Curr Opin Cell Biol, 2016, 41, 81-90. [7] S. Pennazio, P. Roggero, The discovery of the chemical nature of tobacco mosaic virus, Riv Biol, 2000, 93, 253-281. [8] J. Jeevanandam, K. Pal, M.K. Danquah, Virus-like nanoparticles as a novel delivery tool in gene therapy, Biochimie, 2019, 157, 38-47. [9] P.A. Levin, E.R. Angert, Small but mighty: cell size and bacteria, Cold Spring Harb Perspect Biol, 2015, 7, a019216. [10] G. Widmer, Suppression of Leishmania RNA virus replication by capsid protein overexpression, J Virol, 1995, 69, 4122-4126. [11] M.G. Rossmann, Structure of viruses: a short history, Q Rev Biophys, 2013, 46, 133-180. [12] D. Morens, G. Folkers, A. Fauci, The challenge of emerging and re–emerging infectious diseases, Nature, 2004, 430, 242-249. [13] L.Y. Chang, Enterovirus 71 in Taiwan, Pediatr Neonatol, 2008, 49, 103-112. [14] E.C. Hutchinson, Influenza virus, Trends Microbiol, 2018, 26, 809-810. [15] D. Sauter, F. Kirchhoff, Key viral adaptations preceding the AIDS pandemic, Cell Host Microbe, 2019, 25, 27-38. [16] S.J. Lycett, F. Duchatel, P. Digard, A brief history of bird flu, Philos Trans R Soc Lond B Biol Sci, 2019, 374, rstb.2018.0257. [17] Y. Zhang, O.K. Dudko, Statistical mechanics of viral entry, Phys Rev Lett, 2015, 114, 018104. [18] S. Barman, A. Ali, E.K. Hui, L. Adhikary, D.P. Nayak, Transport of viral proteins to the apical membranes and interaction of matrix protein with glycoproteins in the assembly of influenza viruses, Virus Res, 2001, 77, 61-69. [19] J.S. Rossman, R.A. Lamb, Influenza virus assembly and budding, Virology, 2011, 411, 229-236. [20] B.S. Chen, Structure and function of apolipoprotein and prevention and therapy of virus diseases, Acta Academiae Medicinae Sinica, 2007, 29, 448-451. [21] D.Y. Lu, T.R. Lu, J.Y. Che, H.Y. Wu, B. Xu, New perspectives of HIV/AIDS therapy study, Recent Pat Antiinfect Drug Discov, 2014, 9, 112-120. [22] Y. Zhang, S. Qu, L. Xu, Progress in the study of virus detection methods: The possibility of alternative methods to validate virus inactivation, Biotechnol Bioeng, 2019, 116, 2095-2102. [23] O. Meurman, P. Hänninen, R.V. Krishna, T. Ziegler, Determination of IgG- and IgM-class antibodies to mumps virus by solid-phase enzyme immunoassay, J Virol Methods, 1982, 4, 249-256. [24] P. Ukkonen, O. Väisänen, K. Penttinen, Enzyme-linked immunosorbent assay for mumps and parainfluenza type 1 immunoglobulin G and immunoglobulin M antibodies, J Clin Microbiol, 1980, 11, 319-323. [25] F. Condorelli, T. Ziegler, Dot immunobinding assay for simultaneous detection of specific immunoglobulin G antibodies to measles virus, mumps virus, and rubella virus, J Clin Microbiol, 1993, 31, 717-719. [26] I.M. Artika, A. Wiyatno, C.N. Ma'roef, Pathogenic viruses: Molecular detection and characterization, Infect Genet Evol, 2020, 81, j.meegid.2020.104215. [27] S.F. Hawkins, P.C. Guest, Multiplex Analyses Using Real-Time Quantitative PCR, Methods Mol Biol, 2017, 1546, 125-133. [28] I. Stock, [Hand, foot and mouth disease--more than a harmless "childhood disease"], Med Monatsschr Pharm, 2014, 37, 4-10. [29] T. Solomon, P. Lewthwaite, D. Perera, M.J. Cardosa, P. McMinn, M.H. Ooi, Virology, epidemiology, pathogenesis, and control of enterovirus 71, Lancet Infect Dis, 2010, 10, 778-790. [30] M. Ho, Enterovirus 71: the virus, its infections and outbreaks, J Microbiol Immunol Infect, 2000, 33, 205-216. [31] G. Gonzalez, M.J. Carr, M. Kobayashi, N. Hanaoka, T. Fujimoto, Enterovirus-associated hand-foot and mouth disease and neurological complications in japan and the rest of the world, Int J Mol Sci, 2019, 20, 5201. [32] J.O. Cifuente, H. Lee, J.D. Yoder, K.L. Shingler, M.S. Carnegie, J.L. Yoder, R.E. Ashley, A.M. Makhov, J.F. Conway, S. Hafenstein, Structures of the procapsid and mature virion of enterovirus 71 strain 1095, J Virol, 2013, 87, 7637-7645. [33] H.I. Huang, S.R. Shih, Neurotropic enterovirus infections in the central nervous system, Viruses, 2015, 7, 6051-6066. [34] A. Saguil, S.F. Kane, R. Lauters, M.G. Mercado, Hand-foot-and-mouth disease: rapid evidence review, Am Fam Physician, 2019, 100, 408-414. [35] Y.K. Chang, K.H. Chen, K.T. Chen, Hand, foot and mouth disease and herpangina caused by enterovirus A71 infections: a review of enterovirus A71 molecular epidemiology, pathogenesis, and current vaccine development, Rev Inst Med Trop Sao Paulo, 2018, 60, e70. [36] M.Y. Liu, W. Liu, J. Luo, Y. Liu, Y. Zhu, H. Berman, J. Wu, Characterization of an outbreak of hand, foot, and mouth disease in Nanchang, China in 2010, PLoS One, 2011, 6, e25287. [37] M.Y. Chia, P.S. Chiang, W.Y. Chung, S.T. Luo, M.S. Lee, Epidemiology of enterovirus 71 infections in Taiwan, Pediatr Neonatol, 2014, 55, 243-249. [38] S.Y. Wang, T.L. Lin, H.Y. Chen, T.S. Lin, Early and rapid detection of enterovirus 71 infection by an IgM-capture ELISA, J Virol Methods, 2004, 119, 37-43. [39] B.A. Prabowo, R.Y.L. Wang, M.K. Secario, P.T. Ou, A. Alom, J.J. Liu, K.C. Liu, Rapid detection and quantification of Enterovirus 71 by a portable surface plasmon resonance biosensor, Biosens Bioelectron, 2017, 92, 186-191. [40] B.A. Brown, D.R. Kilpatrick, M.S. Oberste, M.A. Pallansch, Serotype-specific identification of enterovirus 71 by PCR, J Clin Virol, 2000, 16, 107-112. [41] T. Nolan, R.E. Hands, S.A. Bustin, Quantification of mRNA using real-time RT-PCR, Nat Protoc, 2006, 1, 1559-1582. [42] Y.F. Tu, C.S. Chien, A.A. Yarmishyn, Y.Y. Lin, Y.H. Luo, Y.T. Lin, W.Y. Lai, D.M. Yang, S.J. Chou, Y.P. Yang, M.L. Wang, S.H. Chiou, A review of SARS-CoV-2 and the ongoing clinical trials, Int J Mol Sci, 2020, 21, 2657. [43] S. Ludwig, A. Zarbock, Coronaviruses and SARS-CoV-2: A brief overview, Anesth Analg, 2020, 131, 93-96. [44] C.C. Lai, Y.H. Liu, C.Y. Wang, Y.H. Wang, S.C. Hsueh, M.Y. Yen, W.C. Ko, P.R. Hsueh, Asymptomatic carrier state, acute respiratory disease, and pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): Facts and myths, J Microbiol Immunol Infect, 2020, 53, 404-412. [45] N. Irigoyen, A.E. Firth, J.D. Jones, B.Y. Chung, S.G. Siddell, I. Brierley, High-resolution analysis of coronavirus gene expression by RNA sequencing and ribosome profiling, PLoS Pathog, 2016, 12, e1005473. [46] A.A. Rabaan, S.H. Al-Ahmed, S. Haque, R. Sah, R. Tiwari, Y.S. Malik, K. Dhama, M.I. Yatoo, D.K. Bonilla-Aldana, A.J. Rodriguez-Morales, SARS-CoV-2, SARS-CoV, and MERS-COV: A comparative overview, Infez Med, 2020, 28, 174-184. [47] E.Y. Peng, M.B. Lee, S.T. Tsai, C.C. Yang, D.E. Morisky, L.T. Tsai, Y.L. Weng, S.Y. Lyu, Population-based post-crisis psychological distress: an example from the SARS outbreak in Taiwan, J Formos Med Assoc, 2010, 109, 524-532. [48] W.K. Lam, N.S. Zhong, W.C. Tan, Overview on SARS in Asia and the world, Respirology, 2003, 8 Suppl, S2-S5. [49] A.C. Walls, Y.J. Park, M.A. Tortorici, A. Wall, A.T. McGuire, D. Veesler, Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein, Cell, 2020, 181, 281-292. [50] X. Ou, Y. Liu, X. Lei, P. Li, D. Mi, L. Ren, L. Guo, R. Guo, T. Chen, J. Hu, Z. Xiang, Z. Mu, X. Chen, J. Chen, K. Hu, Q. Jin, J. Wang, Z. Qian, Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV, Nat Commun, 2020, 11, s41467-41020-15562-41469. [51] A. Chafekar, B.C. Fielding, MERS-CoV: Understanding the latest Human coronavirus threat, Viruses, 2018, 10, 93. [52] Y. Yin, R.G. Wunderink, MERS, SARS and other coronaviruses as causes of pneumonia, Respirology, 2018, 23, 130-137. [53] S. Kannan, P. Shaik Syed Ali, A. Sheeza, K. Hemalatha, COVID-19 (Novel coronavirus 2019) - recent trends, Eur Rev Med Pharmacol Sci, 2020, 24, 2006-2011. [54] J. Lan, J. Ge, J. Yu, S. Shan, H. Zhou, S. Fan, Q. Zhang, X. Shi, Q. Wang, L. Zhang, X. Wang, Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor, Nature, 2020, 581, 215-220. [55] W. Song, M. Gui, X. Wang, Y. Xiang, Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2, PLoS Pathog, 2018, 14, e1007236. [56] S.F. Wang, S.P. Tseng, C.H. Yen, J.Y. Yang, C.H. Tsao, C.W. Shen, K.H. Chen, F.T. Liu, W.T. Liu, Y.M. Chen, J.C. Huang, Antibody-dependent SARS coronavirus infection is mediated by antibodies against spike proteins, Biochem Biophys Res Commun, 2014, 451, 208-214. [57] J. Brown, C. Pope, Personal protective equipment and possible routes of airborne spread during the COVID-19 pandemic, Anaesthesia, 2020, 75, 1116-1117. [58] F.J. Carod-Artal, Neurological complications of coronavirus and COVID-19, Rev Neurol, 2020, 70, 311-322. [59] L. Zhong, J. Chuan, B. Gong, P. Shuai, Y. Zhou, Y. Zhang, Z. Jiang, D. Zhang, X. Liu, S. Ma, Y. Huang, H. Lin, Q. Wang, L. Huang, D. Jiang, F. Hao, J. Tang, C. Zheng, H. Yu, Z. Wang, Q. Jiang, T. Zeng, M. Luo, F. Zeng, F. Zeng, J. Liu, J. Tian, Y. Xu, T. Long, K. Xu, X. Yang, Y. Liu, Y. Shi, L. Jiang, Z. Yang, Detection of serum IgM and IgG for COVID-19 diagnosis, Sci China Life Sci, 2020, 63, 777-780. [60] J. Won, S. Lee, M. Park, T.Y. Kim, M.G. Park, B.Y. Choi, D. Kim, H. Chang, V.N. Kim, C.J. Lee, Development of a laboratory-safe and low-cost detection protocol for SARS-CoV-2 of the coronavirus disease 2019 (COVID-19), Exp Neurobiol, 2020, 29, 107-119. [61] Y. Liu, A.A. Gayle, A. Wilder-Smith, J. Rocklöv, The reproductive number of COVID-19 is higher compared to SARS coronavirus, J Travel Med, 2020, 27, taaa021. [62] I. Kokkinakis, K. Selby, B. Favrat, B. Genton, J. Cornuz, [Covid-19 diagnosis : clinical recommendations and performance of nasopharyngeal swab-PCR], Rev Med Suisse, 2020, 16, 699-701. [63] R. Gulaboski, M. Lovrić, V. Mirceski, I. Bogeski, M. Hoth, A new rapid and simple method to determine the kinetics of electrode reactions of biologically relevant compounds from the half-peak width of the square-wave voltammograms, Biophys Chem, 2008, 138, 130-137. [64] X. Zhou, S. Guo, J. Gao, J. Zhao, S. Xue, W. Xu, Glucose oxidase-initiated cascade catalysis for sensitive impedimetric aptasensor based on metal-organic frameworks functionalized with Pt nanoparticles and hemin/G-quadruplex as mimicking peroxidases, Biosens Bioelectron, 2017, 98, 83-90. [65] B. Bohunicky, S.A. Mousa, Biosensors: the new wave in cancer diagnosis, Nanotechnol Sci Appl, 2010, 4, 1-10. [66] S. Neethirajan, V. Ragavan, X. Weng, R. Chand, Biosensors for sustainable food engineering: challenges and perspectives, Biosensors (Basel), 2018, 8, 23. [67] J. Chen, L. Miao, J.M. Li, Y.Y. Li, Q.Y. Zhu, C.L. Zhou, H.Q. Fang, H.P. Chen, Receptor-binding domain of SARS-Cov spike protein: soluble expression in E. coli, purification and functional characterization, World J Gastroenterol, 2005, 11, 6159-6164. [68] O. Gileadi, Recombinant protein expression in E. coli : A historical perspective, Methods Mol Biol, 2017, 1586, 3-10. [69] N.L. Rose, M.M. Palcic, L.M. Helms, J.R. Lakey, Evaluation of pefabloc as a serine protease inhibitor during human-islet isolation, Transplantation, 2003, 75, 462-466. [70] F. Baneyx, M. Mujacic, Recombinant protein folding and misfolding in Escherichia coli, Nat Biotechnol, 2004, 22, 1399-1408. [71] G.S. Buchner, R.D. Murphy, N.-V. Buchete, J. Kubelka, Dynamics of protein folding: probing the kinetic network of folding-unfolding transitions with experiment and theory, Biochimica et biophysica acta, 2011, 1814, 1001-1020. [72] C.-C. Chang, X.-C. Yeh, H.-T. Lee, P.-Y. Lin, L.-S. Kan, Refolding of lysozyme by quasistatic and direct dilution reaction paths: a first-order-like state transition, Phys. Rev. E Stat. Nonlin. Soft Matter Phys, 2004, 70, 011904. [73] K. Ashizawa, Nanosize particle analysis by dynamic light acattering (DLS), J. Phys. Soc. Japan, 2019, 139, 237-248. [74] J.D. Clogston, A.K. Patri, Zeta potential measurement, Methods Mol Biol, 2011, 697, 63-70. [75] N.J. Greenfield, Using circular dichroism spectra to estimate protein secondary structure, Nat Protoc, 2006, 1, 2876-2890. [76] Y. Wei, A.A. Thyparambil, R.A. Latour, Protein helical structure determination using CD spectroscopy for solutions with strong background absorbance from 190 to 230nm, Biochimica et biophysica acta, 2014, 1844, 2331-2337. [77] Y.H. Chen, J.T. Yang, A new approach to the calculation of secondary structures of globular proteins by optical rotatory dispersion and circular dichroism, Biochem Biophys Res Commun, 1971, 44, 1285-1291. [78] W. Qi, Y. Fu, M. Zhao, H. He, X. Tian, L. Hu, Y. Zhang, Electrochemiluminescence resonance energy transfer immunoassay for alkaline phosphatase using p-nitrophenyl phosphate as substrate, Anal Chim Acta, 2020, 1097, 71-77. [79] R.S. Nicholson, I. Shain, Theory of stationary electrode polarography. Single scan and cyclic methods applied to reversible, irreversible, and kinetic systems, Analytical Chemistry, 1964, 36, 706-723. [80] P.T. Kissinger, W.R. Heineman, Cyclic voltammetry, Journal of Chemical Education, 1983, 60, 702-706. [81] A. ter Heijne, O. Schaetzle, S. Gimenez, L. Navarro, B. Hamelers, F. Fabregat-Santiago, Analysis of bio-anode performance through electrochemical impedance spectroscopy, Bioelectrochemistry, 2015, 106, 64-72. [82] F. Lisdat, D. Schäfer, The use of electrochemical impedance spectroscopy for biosensing, Anal Bioanal Chem, 2008, 391, 1555-1567. [83] I. Suni, Impedance methods for electrochemical sensors using nanomaterials, Trends in Analytical Chemistry - TrAC, 2008, 27, 604-611. [84] F. Lisdat, D. Schäfer, The use of electrochemical impedance spectroscopy for biosensing, Anal Bioanal Chem, 2008, 391, 1555-1567. [85] M. Vojnovic, D. Sepa, Effect of electrode materials on the kinetics of electron exchange reactions, Chem. Phys., 1969, 51, 5344-5351. [86] M.H. Mashhadizadeh, R.P. Talemi, A new methodology for electrostatic immobilization of a non-labeled single strand DNA onto a self-assembled diazonium modified gold electrode and detection of its hybridization by differential pulse voltammetry, Talanta, 2013, 103, 344-348. [87] J.E. Prieto, I. Markov, Stranski-Krastanov mechanism of growth and the effect of misfit sign on quantum dots nucleation, Surface Science, 2017, 664, 172-184. [88] H.L. Skriver, N.M. Rosengaard, Surface energy and work function of elemental metals, Physical Review B, 1992, 46, 7157-7168. [89] S.M. Foiles, M.I. Baskes, M.S. Daw, Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys, Physical Review B, 1986, 33, 7983-7991. [90] A.J.B.a.L.R. Faulkner, Electrochemical methods: fundamentals and applications, Russ. J. Electrochem, 2002, 38, 1364-1365. [91] A. Brajter-Toth, Donald Sawyer, Andrzej Sobkowiak , Julian L. Roberts, Electrochemistry for Chemists, J. Am. Chem. Soc, 1996, 118, 10339-10340. [92] M. Shi, Y. Zhou, L. Cao, C. Ding, Y. Ji, Q. Jiang, X. Liu, X. Li, X. Hou, H. Peng, W. Shi, Expression of enterovirus 71 capsid protein VP1 in Escherichia coli and its clinical application, Braz J Microbiol, 2013, 44, 1215-1222. [93] K. Lyu, Y.L. He, H.Y. Li, R. Chen, Crystal structures of yeast-produced Enterovirus 71 and Enterovirus 71/Coxsackievirus A16 chimeric virus-like particles provide the structural basis for novel vaccine design against hand-foot-and-mouth disease, J Virol, 2015, 89, 196-208. [94] X. Tang, J. Wu, J. Sivaraman, C.L. Hew, Crystal structures of major envelope proteins VP26 and VP28 from white spot syndrome virus shed light on their evolutionary relationship, J Virol, 2007, 81, 6709-6717. [95] Y. Chen, Y. Guo, Y. Pan, Z. Zhao, Structure analysis of the receptor binding of 2019-nCoV, Biochem Biophys Res Commun, 2020, 525, 135-140. [96] J. Shang, G. Ye, K. Shi, Y. Wan, C. Luo, H. Aihara, Q. Geng, A. Auerbach, F. Li, Structural basis of receptor recognition by SARS-CoV-2, Nature, 2020, 581, 221-224. [97] J.C. Love, D.B. Wolfe, R. Haasch, M.L. Chabinyc, K.E. Paul, G.M. Whitesides, R.G. Nuzzo, Formation and structure of self-assembled monolayers of alkanethiolates on palladium, J. Am. Chem. Soc., 2003, 125, 2597-2609. [98] M.C. Martins, C. Fonseca, M.A. Barbosa, B.D. Ratner, Albumin adsorption on alkanethiols self-assembled monolayers on gold electrodes studied by chronopotentiometry, Biomaterials, 2003, 24, 3697-3706. [99] C. Majumder, Adsorption of thiols on the Pd(111) surface: a first principles study, Langmuir, 2008, 24, 10838-10842. [100] R.J. Williams, Self-assembling surfaces, Nature, 1988, 332, 332-393. [101] E.J. Yi, Y.J. Shin, J.H. Kim, T.G. Kim, S.Y. Chang, Enterovirus 71 infection and vaccines, Clin Exp Vaccine Res, 2017, 6, 4-14. [102] W. Tai, L. He, X. Zhang, J. Pu, D. Voronin, S. Jiang, Y. Zhou, L. Du, Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine, Cell Mol Immunol, 2020, 17, 613-620. [103] J. Yuan, L. Shen, J. Wu, X. Zou, J. Gu, J. Chen, L. Mao, Enterovirus A71 proteins: structure and function, Front Microbiol, 2018, 9, fmicb.2018.00286. [104] H.-Y. Li, S.-H. Tseng, T.-M. Cheng, H.-L. Chu, Y.-N. Lu, F.-Y. Wang, L.-Y. Tsai, J.-Y. Shieh, J.-Y. Yang, C.-C. Juan, L.-C. Tu, C.-C. Chang, Corrigendum: Rapid and highly sensitive detection of Enterovirus 71 by using nanogold-enhanced electrochemical impedance spectroscopy, Nanotechnology, 2013, 24, 399501. [105] H.L. Skriver, N.M. Rosengaard, Surface energy and work function of elemental metals, Phys Rev B Condens Matter, 1992, 46, 7157-7168. [106] J.Y. Kim, Y.I. Kim, S.J. Park, I.K. Kim, Y.K. Choi, S.H. Kim, Safe, high-throughput screening of natural compounds of MERS-CoV entry inhibitors using a pseudovirus expressing MERS-CoV spike protein, Int J Antimicrob Agents, 2018, 52, 730-732.
|