跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/10 10:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳威廷
研究生(外文):Chen, Wei-Ting
論文名稱:羽球資料視覺化與戰情呈現
論文名稱(外文):Badminton Data Analysis and Visualization
指導教授:王昱舜王昱舜引用關係
指導教授(外文):Wang, Yu-Shuen
口試委員:易志偉彭文志王志全王昱舜
口試委員(外文):Yi, Chih-WeiPeng, Wen-ChihWang, Chih-ChuanWang, Yu-Shuen
口試日期:2020-08-07
學位類別:碩士
校院名稱:國立交通大學
系所名稱:多媒體工程研究所
學門:電算機學門
學類:軟體發展學類
論文種類:學術論文
論文出版年:2020
畢業學年度:109
語文別:中文
論文頁數:37
中文關鍵詞:Badminton Data AnalysisImage ClassificationSemi-supervised LearningBadminton Data Visualization
外文關鍵詞:羽球資料分析影像分類半監督式學習羽球資料視覺化
相關次數:
  • 被引用被引用:0
  • 點閱點閱:398
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文介紹使用電腦視覺和深度學習的方法,從運動比賽的轉播影片中預測並取得球員的跑位以及球員的擊球點分布,統計這些擊球點的分布,此外,我們收集大量擊球點資料,設計一個互動式的視覺化介面將這些資料進行視覺化,讓教練可以藉由操作這個視覺化的介面,觀察雙方球員的擊球行為,以此制定戰術或者是訓練的方式。為了從轉播影片中提取有用的資料,我們提出一些方法去對比賽的轉播影片進行前處理,包括雜訊過濾、影片切割,接著使用YOLO-v3[1]偵測出球員位置,透過座標轉換取得球員在真實座標系統中的跑位,使用優化過的OpenPose[2]模型偵測球員姿勢,將球員姿勢丟入W-ResNet-28+LSTM[3,4]模型判定球員擊球,並由球員擊球判定的結果統計擊球點的資料,收集球員的情報,供教練觀察這些資料,了解球員在對戰中的擊球習性,以及弱點區域分析,透過我們設計的視覺化系統去觀察可以更直覺且有效的觀察球員特性。最後我們找出幾個例子顯示擊球分布以及球速,就可以發現球員在對戰時習慣使用的打法。
This paper presents several computer vision and deep learning methods to predict the players' trajectory and the distribution of the players' hitting points from the broadcast videos of sports games, and statistics the distribution of these hitting points. We collected hitpoint data and visualize these data, so that the coach can use this visual interface to observe the hitting behavior of the players to develop tactics or training methods. In order to extract useful information from the broadcast video, we propose some methods to pre-process the broadcast video of the game, including noise filtering, video segmentation, and then use YOLO-v3[1] to detect the position of the players, and obtain the players’ real position through coordinate transformation. Uses the optimized OpenPose [2]model to detect the player's posture, input the player's posture into the W-ResNet-28+LSTM [3,4]model to determine the player's hitpoints, and collects the detected hitpoint data , Collect players’ intelligence for the coach to observe the information, understand the players’ hitting habits in the game, and analyze the weak areas. Observing through the visualization system we designed can more intuitively and effectively observe the player’s characteristics. Finally, we find some examples to show the distribution of shots and the speed of the ball, we can find the players used to play in the game.
摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
一、序論 1
二、相關研究 3
三、方法 6
3.1 概觀 6
3.2 雜訊過濾與影片切割 7
3.2.1 比賽/非比賽畫面分類 7
3.2.2 影片切割 8
3.2.3 分數偵測 8
3.3 偵測球員跑位 10
3.3.1 抓取球員軌跡和動作 10
3.3.2 座標空間轉換 10
3.4 骨架資料收集與模型優化 12
3.4.1 資料收集 12
3.4.2 球員姿態偵測與模型優化 13
3.5 擊球動作偵測 16
3.5.1 球員擊球動作偵測 16
3.5.2 擊球點預測及收集 18
四、結果與分析 19
4.1 轉播影片的前處理 19
4.2 球員姿態偵測 21
4.3 球員跑位 23
4.4 球員擊球偵測 24
4.5 球員擊球分布視覺化 26
4.6 不足與限制 33
五、結語與展望 34
參考文獻 35
[1] J. Redmon and A. Farhadi. Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767, 2018
[2] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh. Realtime multiperson 2d pose estimation using part affinity fields. In CVPR, 2017
[3]Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint arXiv:1605.07146, 2016.
[4] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780, 1997.
[5]V. Ren, N. Mosca, M. Nitti, T. DOrazio, C. Guaragnella, D. Campagnoli, A. Prati, and E. Stella. A technology platform for automatic high-level tennis game analysis. CVIU, 2017
[6]F. Yoshikawa, T. Kobayashi, K. Watanabe, and N. Otsu. Automated service scene detection for badminton game analysis using CHLAC and MRA
[7] G. Bertasius, H. S. Park, S. X. Yu, and J. Shi. Am i a baller? basketball performance assessment from first-person videos. In ICCV, 2017.
[8] M. Sukhwani and C. Jawahar. Tennisvid2text: Fine-grained descriptions for domain specific videos. In BMVC, 2015.
[9] M. Sukhwani and C. Jawahar. Frame level annotations for tennis videos. In ICPR, 2016
[10] D. Farin, S. Krabbe, P. H. N. de With, and W. Effelsberg, “Robust camera calibration for sport videos using court models,” Storage and Retrieval Methods and Applications for Multimedia (SPIE), vol. 5307, pp. 80–91, 2004.
[11] J. Han, D. Farin and P.H.N. de With, “A real-time augmented-reality system for sports broadcast video enhancement,” Proc. ACM Multimedia, vol. 1, pp. 337-340, Augsburg, Germany, 2007.
[12] J. Puwein, R. Ziegler, L. Ballan, and M. Pollefeys. PTZ Camera Network Calibration from Moving People in Sports Broadcasts. In Proc. WACV, 2012.
[13] M. Stein, H. Janetzko, A. Lamprecht, T. Breitkreutz, P. Zimmermann B. Goldlucke, T. Schreck, G. L. Andrienko, M. Grossniklaus, and D. A. ¨ Keim. Bring it to the pitch: Combining video and movement data to enhance team sport analysis. IEEE Transactions on Visualization and Computer Graphics., 24(1):13–22, 2018.
[14] P.-C. Wen, W.-C. Cheng, Y.-S. Wang, H.-K. Chu, N. C. Tang, and H.-Y. M. Liao. Court reconstruction for camera calibration in broadcast basketball videos. IEEE TVCG, 22(5):1517–1526, 2016.
[15] H. Ben Shitrit, J. Berclaz, F. Fleuret and P. Fua, "Tracking multiple people under global appearance constraints," 2011 International Conference on Computer Vision, Barcelona, 2011, pp. 137-144, doi:10.1109/ICCV.2011.6126235.
[16] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014.
[17] R. Girshick. Fast R-CNN. arXiv:1504.08083, 2015.
[18] J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders. Selective search for object recognition. IJCV, 2013.
[19] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real-time object detection with region proposal networks. In NIPS, 2015.
[20] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified, real-time object detection. arXiv preprint arXiv:1506.02640, 2015
[21] J. Redmon and A. Farhadi. Yolo9000: Better, faster, stronger. In Computer Vision and Pattern Recognition (CVPR), 2017 IEEE Conference on, pages 6517–6525. IEEE, 2017.
[22] M. S. Ibrahim, S. Muralidharan, Z. Deng, A. Vahdat, and G. Mori. A hierarchical deep temporal model for group activity recognition. In CVPR, 2016.
[23] W.-T. Chu and S. Situmeang. Badminton Video Analysis based on Spatiotemporal and Stroke Features. In ICMR, 2017.
[24] A. Ghosh, S. Singh, and C. Jawahar, “Towards structured analysis of broadcast badminton videos,” in 2018 IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE, 2018, pp. 296–304.
[25] T. Hsu et al., "CoachAI: A Project for Microscopic Badminton Match Data Collection and Tactical Analysis," 2019 20th Asia-Pacific Network Operations and Management Symposium (APNOMS), Matsue, Japan, 2019, pp. 1-4, doi: 10.23919/APNOMS.2019.8893039.
[26] Y.-C. Huang, “TrackNet: Tennis ball tracking from broadcast video by deep learning networks,” Master’s thesis, National Chiao Tung University, Hsinchu City, Taiwan, 19 April 2018, advised by Chih-Wei Yi.
[27] I. Zeki Yalniz, Herv’e J’egou, Kan Chen, Manohar Paluri, and Dhruv Mahajan. Billion-scale semi-supervised learning for image classification. Arxiv 1905.00546, 2019.
[28] Qizhe Xie, Eduard Hovy, Minh-Thang Luong, and Quoc V. Le. Self-training with noisy student improves ImageNet classification. arXiv preprint arXiv:1911.04252, 2019.
[29] David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital Oliver, and Colin Raffel. Mixmatch: A holistic approach to semi-supervised learning. arXiv preprint arXiv:1905.02249, 2019.
[30] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz. mixup: Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412, 2017.
[31]K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. arXiv preprint arXiv:1512.03385, 2015.
[32]T. de Campos, B. Babu, and M. Varma. Character recognition in natural images. In VISAPP, Feb. 2009.
[33]T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollar, and C. L. Zitnick, “Microsoft COCO: common objects in ´ context,” in ECCV, 2014
[34]K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015
[35]Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N. Dauphin. Convolutional sequence to sequence learning. arXiv preprint arXiv:1705.03122v2, 2017
[36]Qizhe Xie, Zihang Dai, Eduard Hovy, Minh-Thang Luong, and Quoc V. Le. Unsupervised data augmentation for consistency training. arXiv preprint arXiv:1904.12848, 2019.
電子全文 電子全文(網際網路公開日期:20250819)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top