跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.156) 您好!臺灣時間:2023/03/27 09:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃台伶
研究生(外文):Huang, Tai-Ling
論文名稱:以上轉換奈米粒子結合光動力治療開發類澱粉蛋白之降解技術
論文名稱(外文):Using upconversion nanoparticles combined with photodynamic therapy for amyloid-beta degradation
指導教授:莊競程陳榮治陳榮治引用關係
指導教授(外文):Chuang, Ching-ChengChen, Jung-Chih
口試委員:林峯輝謝明發陳榮治莊競程
口試委員(外文):Lin, Feng-HueiHsieh, Ming-FaChen, Jung-ChihChuang, Ching-Cheng
口試日期:2020-07-14
學位類別:碩士
校院名稱:國立交通大學
系所名稱:生醫工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:109
語文別:中文
論文頁數:62
中文關鍵詞:上轉換奈米粒子光動力治療活性氧物種類澱粉蛋白
外文關鍵詞:Upconversion nanoparticlesPhotodynamic therapyReactive oxygen speciesAmyloid beta
相關次數:
  • 被引用被引用:0
  • 點閱點閱:120
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究開發之上轉換奈米粒子可透過反應時間有效控制其尺寸,透過980 nm波段之近紅外光照射後可造成其吸收多個光子並發出綠色可見光,此一特性得以解決光動力治療時因可見光穿透力不足造成無法進行非侵入式治療之問題,因上轉換奈米粒子之激發光源具有足夠穿透深度和粒子本身低自體螢光等優點,因此相當適合應用於光動力治療領域。過去研究多將光動力治療應用於癌症,光動力治療是利用光敏劑受到可見光激發後,因為能量的轉移使細胞周圍的氧分子接收到轉移的能量而形成活性氧物種,活性氧物種便會對細胞造成傷害,最後導致光敏劑周遭之癌細胞凋亡。而本研究則結合上轉換奈米粒子與光動力治療應用於類澱粉蛋白之降解,是由於活性氧物種的產生可以使類澱粉蛋白產生氧化的效果,最後造成鍵結的斷裂,更突破了以往光動力學以及上轉換奈米粒子之應用。除此之外,本研究所開發之上轉換奈米粒子在經過矽殼以及玫瑰紅鈉鹽的表面修飾後進行分析,透過一步又一步的驗證更證實了本研究所合成之上轉換奈米粒子成功進行上述所提及之表面修飾且不影響本身之特性,不論是在晶相、螢光性能亦或是生產活性氧物種的觀察中皆具有良好的表現。不僅如此,於本研究的最後成功藉由石英晶體微天秤證實了上轉換奈米粒子確實可以有效切割類澱粉蛋白之序列,且在結果中可明顯觀察到序列是否斷裂之差異。
The upconversion nanoparticles developed by this research can effectively control its size through the reaction time. After being irradiated with near-infrared light in the 980 nm, it can cause it to absorb multiple photons and emit green visible light. The problem of non-invasive treatment cannot be performed due to insufficient visible light penetration, but the excitation light source of the upconversion nanoparticles has the advantages of sufficient penetration depth and low self-fluorescence of the particles, so it is very suitable for application in the field of photodynamic therapy. In the past, most researches applied photodynamic therapy to cancer. Photodynamic therapy uses a photosensitizer to be excited by visible light. Because of the energy transfer, the oxygen molecules around the cell receive the transferred energy to form reactive oxygen species, so the cells were damaged and eventually lead to apoptosis of the cancer cells around the photosensitizer. In this study, the combination of upconversion nanoparticles and photodynamic therapy was applied to the degradation of amyloid-beta, because the generation of reactive oxygen species can cause the oxidation effect of amyloid-beta, and finally cause the breakage of the peptide, which is more breakthrough than photodynamic therapy application before. In addition, the upconversion nanoparticles developed by us were analyzed after surface modification of the silicon shell and Rose Bengal, and the success of the synthesis of upconversion nanoparticles in this research was confirmed by step-by-step verification. The surface modification mentioned above does not affect its own characteristics, whether it is in the crystalline phase, the emitting performance, or the production of reactive oxygen species, all have good performance. Not only that, but our success at the end of this study also confirmed that the upconversion nanoparticles can effectively cleave the amyloid-beta sequence analyzed by quartz crystal micro-scale, and the difference in whether the sequence is broken can be clearly observed in the results.
目錄
摘 要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 viii
表目錄 x
第1章 緒論 1
1.1 研究背景 1
1.2 研究動機及目的 3
第2章 文獻回顧 5
2.1 阿茲海默症 (Alzheimer’s Disease) 5
2.2 類澱粉前驅蛋白 (Amyloid precursor protein;APP) 6
2.3 β類澱粉蛋白 (Beta-amyloid;Aβ) 8
2.4 Tau蛋白 (Tau protein) 9
2.5 奈米材料原理及應用之介紹 10
2.6 近紅外光譜 (Near Infrared Spectrum, NIRS) 於生醫領域的重要性 11
2.7 上轉換奈米材料簡介 12
2.8 光子上轉換機制 13
2.9 鑭系元素電子軌域躍遷之介紹 15
2.10 上轉換奈米材料常見製備方法 16
2.11 材料表面修飾方法之比較 17
2.12 上轉換奈米材料之應用 20
第3章 材料與方法 23
3.1 實驗材料 23
3.2 實驗儀器 28
3.3 實驗架構 30
3.4 實驗方法及步驟 31
3.4.1 熱共沉澱法製備 NaYF4:Yb/Er 31
3.4.2 對 NaYF4:Yb/Er 進行矽殼之表面修飾 32
3.4.3 NaYF4:Yb/Er@SiO2 表面之胺基修飾 33
3.4.4 利用 Rose Bengal 進行表面修飾 33
3.4.5 同時進行 Rose Bengal 及 Amyloid beta 對材料的表面修飾 34
3.4.6 SEM試片製備 34
3.4.7 TEM試片製備 35
3.4.8 DCFH-DA測試 35
3.4.9 QCM測試 35
3.4.10 生物相容性測試 35
第4章 結果與討論 36
4.1 掃描式電子顯微鏡對 NaYF4:Yb/Er 表面形貌之觀察 37
4.2 穿透式顯微鏡對 NaYF4:Yb/Er@SiO2 之形貌觀察及比較 40
4.3 NaYF4:Yb/Er 與 NaYF4:Yb/Er@SiO2 之晶相分析鑑定 44
4.4 NaYF4:Yb/Er@SiO2 胺基含量之比較 46
4.5 上轉換奈米粒子發光性能之研究 47
4.6 上轉換奈米粒子之吸收光譜 50
4.7 DCFH-DA測試 51
4.8 Rose Bengal 功能之驗證 52
4.9 生物相容性測試 54
第5章 結論 56
參考文獻 58
圖目錄
圖 2 1. 類澱粉蛋白假說之致病機轉 [11] 6
圖 2 2. 類澱粉前驅蛋白形成Aβ之機制 7
圖 2 3. Aβ1-40 與 Aβ1-42 序列 8
圖 2 4. Tau protein 與過度磷酸化 Tau protein 之示意圖 9
圖 2 5. 近紅外光之吸收光譜圖 11
圖 2 6. 上轉換奈米粒子發光示意圖 12
圖 2 7. 光子上轉換之機制。(a) ESA;(b) ETU;(c) PA 14
圖 2 8. Yb3+與Er3+離子能階轉換過程 16
圖 2 9. 奈米材料常見表面修飾方法 19
圖 2 10. 活性氧物種。(a) 1O2;(b) H2O2;(c) OH· 21
圖 2 11. 上轉換奈米粒子激發 RB 示意圖 22
圖 3 1. 實驗架構圖 30
圖 3 2. 上轉換奈米粒子合成步驟 31
圖 3 3. 矽殼修飾示意圖 32
圖 3 4. 胺基修飾示意圖 33
圖 3 5. 光敏劑修飾示意圖 33
圖 3 6. 光敏劑及 Amyloid-beta 修飾示意圖 34
圖 4 1. NaYF4:Yb/Er 以不同時間合成之 SEM圖。 38
圖 4 2. NaYF4:Yb/Er 以不同時間合成之粒徑分布圖 39
圖 4 3. NaYF4:Yb/Er 元素分析之結果。 40
圖 4 4. NaYF4:Yb/Er@SiO2 與 NaYF4:Yb/Er之 TEM 比較圖 42
圖 4 5. NaYF4:Yb/Er@SiO2 之 TEM Mapping 44
圖 4 6. (a)NaYF4:Yb/Er 與 (b)NaYF4:Yb/Er@SiO2 之 XRD 比較圖 (c) JCPDS CARD:28-1192 45
圖 4 7. APTES 濃度對於胺基含量之比較 46
圖 4 8. UCNP 與 SiO2 之光譜比較圖 48
圖 4 9.帶有光敏劑之粒子與 SiO2 之光譜比較圖 49
圖 4 10. 修飾前後上轉換奈米粒子之吸收光譜 50
圖 4 11. DCFH-DA 氧化示意圖 51
圖 4 12. ROS 生成檢測 52
圖 4 13. QCM分析之步驟 53
圖 4 14. Rose Bengal 對 Aβ 造成氧化之驗證 54
圖 4 15.細胞存活率測試 55
表目錄
表4 1. 本實驗合成之上轉換奈米材料參數。 36
[1] D. A. Butterfield and C. B. Pocernich, "The glutamatergic system and Alzheimer’s disease," CNS drugs, vol. 17, no. 9, pp. 641-652, 2003.
[2] R. A. Hansen, G. Gartlehner, A. P. Webb, L. C. Morgan, C. G. Moore, and D. E. Jonas, "Efficacy and safety of donepezil, galantamine, and rivastigmine for the treatment of Alzheimer’s disease: a systematic review and meta-analysis," Clinical interventions in aging, vol. 3, no. 2, p. 211, 2008.
[3] M. Haase and H. Schäfer, "Upconverting nanoparticles," Angewandte Chemie International Edition, vol. 50, no. 26, pp. 5808-5829, 2011.
[4] F. Auzel, "Upconversion and anti-stokes processes with f and d ions in solids," Chemical reviews, vol. 104, no. 1, pp. 139-174, 2004.
[5] N. Menyuk, K. Dwight, and J. Pierce, "NaYF4: Yb, Er—an efficient upconversion phosphor," Applied Physics Letters, vol. 21, no. 4, pp. 159-161, 1972.
[6] C. Opazo et al., "Metalloenzyme-like activity of Alzheimer's disease β-amyloid Cu-dependent catalytic conversion of dopamine, cholesterol, and biological reducing agents to neurotoxic H2O2," Journal of Biological Chemistry, vol. 277, no. 43, pp. 40302-40308, 2002.
[7] D. J. Selkoe, "Translating cell biology into therapeutic advances in Alzheimer's disease," Nature, vol. 399, no. 6738, p. A23, 1999.
[8] J. Shioi et al., "FAD mutants unable to increase neurotoxic Aβ 42 suggest that mutation effects on neurodegeneration may be independent of effects on Aβ," Journal of neurochemistry, vol. 101, no. 3, pp. 674-681, 2007.
[9] M. J. Prince, World Alzheimer Report 2015: the global impact of dementia: an analysis of prevalence, incidence, cost and trends. Alzheimer's Disease International, 2015.
[10] F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, "Upconversion nanoparticles in biological labeling, imaging, and therapy," Analyst, vol. 135, no. 8, pp. 1839-1854, 2010.
[11] J. A. Hardy and G. A. Higgins, "Alzheimer's disease: the amyloid cascade hypothesis," Science, vol. 256, no. 5054, pp. 184-186, 1992.
[12] S. Sadigh-Eteghad, B. Sabermarouf, A. Majdi, M. Talebi, M. Farhoudi, and J. Mahmoudi, "Amyloid-beta: a crucial factor in Alzheimer's disease," Medical Principles and Practice, vol. 24, no. 1, pp. 1-10, 2015.
[13] J. K. Lim et al., "The eye as a biomarker for Alzheimer's disease," Frontiers in neuroscience, vol. 10, p. 536, 2016.
[14] C. R. Jack Jr et al., "NIA-AA Research Framework: Toward a biological definition of Alzheimer's disease," Alzheimer's & Dementia, vol. 14, no. 4, pp. 535-562, 2018.
[15] B. A. Yankner, L. R. Dawes, S. Fisher, L. Villa-Komaroff, M. L. Oster-Granite, and R. L. Neve, "Neurotoxicity of a fragment of the amyloid precursor associated with Alzheimer's disease," Science, vol. 245, no. 4916, pp. 417-420, 1989.
[16] H. G. Lee et al., "Tau phosphorylation in Alzheimer's disease: pathogen or protector?," Trends Mol Med, vol. 11, no. 4, pp. 164-9, Apr 2005, doi: 10.1016/j.molmed.2005.02.008.
[17] R. Katzman, "Alzheimer's disease is a degenerative disorder," Neurobiology of aging, vol. 10, no. 5, pp. 581-582, 1989.
[18] E. Roduner, "Size matters: why nanomaterials are different," Chemical Society Reviews, vol. 35, no. 7, pp. 583-592, 2006.
[19] T. P. Russell, "Nanoscopic Materials: Size-Dependent Phenomena By Emil Roduner (University of Stuttgart, Germany). Royal Society of Chemistry: Cambridge. 2006. xii+ 286 pp. $69.95. ISBN 0-85404.857-X," ed: ACS Publications, 2007.
[20] R. Richards-Kortum and E. Sevick-Muraca, "Quantitative optical spectroscopy for tissue diagnosis," Annual review of physical chemistry, vol. 47, no. 1, pp. 555-606, 1996.
[21] A. Villringer and B. Chance, "Non-invasive optical spectroscopy and imaging of human brain function," Trends in neurosciences, vol. 20, no. 10, pp. 435-442, 1997.
[22] L. V. Wang and H.-i. Wu, Biomedical optics: principles and imaging. John Wiley & Sons, 2012.
[23] D. K. Chatterjee, M. K. Gnanasammandhan, and Y. Zhang, "Small upconverting fluorescent nanoparticles for biomedical applications," Small, vol. 6, no. 24, pp. 2781-2795, 2010.
[24] G. Chen, H. Qiu, P. N. Prasad, and X. Chen, "Upconversion nanoparticles: design, nanochemistry, and applications in theranostics," Chemical reviews, vol. 114, no. 10, pp. 5161-5214, 2014.
[25] X. Han and E. S. Boyden, "Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution," PloS one, vol. 2, no. 3, p. e299, 2007.
[26] J. Suyver et al., "Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion," Optical Materials, vol. 27, no. 6, pp. 1111-1130, 2005.
[27] W. T. Carnall, G. L. Goodman, K. Rajnak, and R. S. Rana, "A systematic analysis of the spectra of the lanthanides doped into single crystal LaF3 " The Journal of Chemical Physics, vol. 90, no. 7, pp. 3443-3457, 1989, doi: 10.1063/1.455853.
[28] Y. Liu, D. Tu, H. Zhu, and X. Chen, "Lanthanide-doped luminescent nanoprobes: controlled synthesis, optical spectroscopy, and bioapplications," Chem Soc Rev, vol. 42, no. 16, pp. 6924-58, Aug 21 2013, doi: 10.1039/c3cs60060b.
[29] X. Huang, S. Han, W. Huang, and X. Liu, "Enhancing solar cell efficiency: the search for luminescent materials as spectral converters," Chemical Society Reviews, vol. 42, no. 1, pp. 173-201, 2013.
[30] S.-N. Shan, X.-Y. Wang, and N.-Q. Jia, "Synthesis of NaYF 4: Yb 3+, Er 3+ upconversion nanoparticles in normal microemulsions," Nanoscale research letters, vol. 6, no. 1, p. 539, 2011.
[31] C. Li and J. Lin, "Rare earth fluoride nano-/microcrystals: synthesis, surface modification and application," Journal of Materials Chemistry, vol. 20, no. 33, pp. 6831-6847, 2010.
[32] Z. Chen et al., "Versatile synthesis strategy for carboxylic acid− functionalized upconverting nanophosphors as biological labels," Journal of the American Chemical Society, vol. 130, no. 10, pp. 3023-3029, 2008.
[33] R. Lv, D. Wang, L. Xiao, G. Chen, J. Xia, and P. N. Prasad, "Stable ICG-loaded upconversion nanoparticles: silica core/shell theranostic nanoplatform for dual-modal upconversion and photoacoustic imaging together with photothermal therapy," Scientific reports, vol. 7, no. 1, p. 15753, 2017.
[34] M. Wang et al., "Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF4: Yb, Er upconversion nanoparticles," ACS nano, vol. 3, no. 6, pp. 1580-1586, 2009.
[35] D. Ni et al., "Dual-targeting upconversion nanoprobes across the blood–brain barrier for magnetic resonance/fluorescence imaging of intracranial glioblastoma," ACS nano, vol. 8, no. 2, pp. 1231-1242, 2014.
[36] A. Valencia and J. Morán, "Reactive oxygen species induce different cell death mechanisms in cultured neurons," Free Radical Biology and Medicine, vol. 36, no. 9, pp. 1112-1125, 2004.
[37] A. D. Ostrowski et al., "Controlled synthesis and single-particle imaging of bright, sub-10 nm lanthanide-doped upconverting nanocrystals," ACS nano, vol. 6, no. 3, pp. 2686-2692, 2012.
[38] R. Lv et al., "An imaging-guided platform for synergistic photodynamic/photothermal/chemo-therapy with pH/temperature-responsive drug release," Biomaterials, vol. 63, pp. 115-127, 2015.
[39] S. Kuk, B. I. Lee, J. S. Lee, and C. B. Park, "Rattle‐Structured Upconversion Nanoparticles for Near‐IR‐Induced Suppression of Alzheimer's β‐Amyloid Aggregation," Small, vol. 13, no. 11, p. 1603139, 2017.
[40] J.-N. Liu, W.-B. Bu, and J.-L. Shi, "Silica coated upconversion nanoparticles: A versatile platform for the development of efficient theranostics," Accounts of chemical research, vol. 48, no. 7, pp. 1797-1805, 2015.
[41] C. Mendoza, A. Désert, L. Khrouz, C. A. Páez, S. Parola, and B. Heinrichs, "Heterogeneous singlet oxygen generation: in-operando visible light EPR spectroscopy," Environmental Science and Pollution Research, pp. 1-6, 2019.
[42] C. R. Lambert and I. E. Kochevar, "Does Rose Bengal triplet generate superoxide anion?," Journal of the American Chemical Society, vol. 118, no. 13, pp. 3297-3298, 1996.
[43] F. Lu, S. H. Wu, Y. Hung, and C. Y. Mou, "Size effect on cell uptake in well‐suspended, uniform mesoporous silica nanoparticles," Small, vol. 5, no. 12, pp. 1408-1413, 2009.
[44] G. Wang, Q. Peng, and Y. Li, "Upconversion luminescence of monodisperse CaF2: Yb3+/Er3+ nanocrystals," Journal of the American Chemical Society, vol. 131, no. 40, pp. 14200-14201, 2009.
[45] H.-X. Mai, Y.-W. Zhang, L.-D. Sun, and C.-H. Yan, "Size-and phase-controlled synthesis of monodisperse NaYF4: Yb, Er nanocrystals from a unique delayed nucleation pathway monitored with upconversion spectroscopy," The Journal of Physical Chemistry C, vol. 111, no. 37, pp. 13730-13739, 2007.
[46] I. L. Hsiao et al., "Biocompatibility of Amine‐Functionalized Silica Nanoparticles: The Role of Surface Coverage," Small, vol. 15, no. 10, p. 1805400, 2019.
[47] M. Conradie, J. Conradie, and E. Erasmus, "Immobilisation of iron tris (β-diketonates) on a two-dimensional flat amine functionalised silicon wafer: a catalytic study of the formation of urethane, from ethanol and a diisocyanate derivative," Polyhedron, vol. 79, pp. 52-59, 2014.
[48] S. Ren, S. Yang, and Y. Zhao, "Derivatization, characterization, and tribological behavior of an amine-terminated polymer surface," Applied surface science, vol. 227, no. 1-4, pp. 293-299, 2004.
[49] A. Szwajca, M. Krzywiecki, and D. Pluskota-Karwatka, "Experimental and computational evidence for hydrogen bonding interaction between 2′-deoxyadenosine conjugate adduct and amino-terminated organic film on Si (001)," Thin Solid Films, vol. 588, pp. 78-84, 2015.
[50] F. Vetrone, J. C. Boyer, J. A. Capobianco, A. Speghini, and M. Bettinelli, "Effect of Yb3+ codoping on the upconversion emission in nanocrystalline Y2O3: Er3+," The Journal of Physical Chemistry B, vol. 107, no. 5, pp. 1107-1112, 2003.
[51] J. F. Suyver, J. Grimm, M. Van Veen, D. Biner, K. Krämer, and H.-U. Güdel, "Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+," Journal of Luminescence, vol. 117, no. 1, pp. 1-12, 2006.
[52] Y. Wang, L. Tu, J. Zhao, Y. Sun, X. Kong, and H. Zhang, "Upconversion luminescence of β-NaYF4: Yb3+, Er3+@ β-NaYF4 core/shell nanoparticles: excitation power density and surface dependence," The Journal of Physical Chemistry C, vol. 113, no. 17, pp. 7164-7169, 2009.
[53] G. M. F. Calixto, J. Bernegossi, L. M. De Freitas, C. R. Fontana, and M. Chorilli, "Nanotechnology-based drug delivery systems for photodynamic therapy of cancer: a review," Molecules, vol. 21, no. 3, p. 342, 2016.
[54] D. K. Chatterjee, L. S. Fong, and Y. Zhang, "Nanoparticles in photodynamic therapy: an emerging paradigm," Advanced drug delivery reviews, vol. 60, no. 15, pp. 1627-1637, 2008.
[55] R. J. Skyrme, A. J. French, S. N. Datta, R. Allman, M. D. Mason, and P. N. Matthews, "A phase‐1 study of sequential mitomycin C and 5–aminolaevulinic acid‐mediated photodynamic therapy in recurrent superficial bladder carcinoma," BJU international, vol. 95, no. 9, pp. 1206-1210, 2005.
[56] H. Kato, "Photodynamic therapy for lung cancer—a review of 19 years' experience," Journal of Photochemistry and Photobiology B: Biology, vol. 42, no. 2, pp. 96-99, 1998.
[57] E. Eruslanov and S. Kusmartsev, "Identification of ROS using oxidized DCFDA and flow-cytometry," in Advanced protocols in oxidative stress II: Springer, 2010, pp. 57-72.
[58] C. Yue et al., "Near-infrared light triggered ROS-activated theranostic platform based on Ce6-CPT-UCNPs for simultaneous fluorescence imaging and chemo-photodynamic combined therapy," Theranostics, vol. 6, no. 4, p. 456, 2016.
[59] C. Yao et al., "Highly biocompatible zwitterionic phospholipids coated upconversion nanoparticles for efficient bioimaging," Analytical chemistry, vol. 86, no. 19, pp. 9749-9757, 2014.
[60] W. H. Tse, L. Chen, C. M. McCurdy, C. M. Tarapacki, B. A. Chronik, and J. Zhang, "Development of biocompatible NaGdF4: Er3+, Yb3+ upconversion nanoparticles used as contrast agents for bio‐imaging," The Canadian Journal of Chemical Engineering, vol. 97, no. 10, pp. 2678-2684, 2019.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊