|
[1] W. H. Organization. "The top 10 causes of death." World Health Organization. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed. [2] J. F. Thayer, S. S. Yamamoto, and J. F. Brosschot, "The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors," Int J Cardiol, vol. 141, no. 2, pp. 122-31, May 28 2010, doi: 10.1016/j.ijcard.2009.09.543. [3] S. C. Malpas, "Sympathetic nervous system overactivity and its role in the development of cardiovascular disease," Physiol Rev, vol. 90, no. 2, pp. 513-57, Apr 2010, doi: 10.1152/physrev.00007.2009. [4] F. M. Abboud, S. C. Harwani, and M. W. Chapleau, "Autonomic neural regulation of the immune system: implications for hypertension and cardiovascular disease," Hypertension, vol. 59, no. 4, pp. 755-62, Apr 2012, doi: 10.1161/HYPERTENSIONAHA.111.186833. [5] E. Kaniusas et al., "Current Directions in the Auricular Vagus Nerve Stimulation I - A Physiological Perspective," Front Neurosci, vol. 13, p. 854, 2019, doi: 10.3389/fnins.2019.00854. [6] W. He et al., "Auricular acupuncture and vagal regulation," Evid Based Complement Alternat Med, vol. 2012, p. 786839, 2012, doi: 10.1155/2012/786839. [7] S. Stavrakis et al., "TREAT AF (Transcutaneous Electrical Vagus Nerve Stimulation to Suppress Atrial Fibrillation): A Randomized Clinical Trial," JACC Clin Electrophysiol, vol. 6, no. 3, pp. 282-291, Mar 2020, doi: 10.1016/j.jacep.2019.11.008. [8] S. Stavrakis et al., "Low-level transcutaneous electrical vagus nerve stimulation suppresses atrial fibrillation," J Am Coll Cardiol, vol. 65, no. 9, pp. 867-75, Mar 10 2015, doi: 10.1016/j.jacc.2014.12.026. [9] E. Frangos, J. Ellrich, and B. R. Komisaruk, "Non-invasive Access to the Vagus Nerve Central Projections via Electrical Stimulation of the External Ear: fMRI Evidence in Humans," Brain Stimul, vol. 8, no. 3, pp. 624-36, May-Jun 2015, doi: 10.1016/j.brs.2014.11.018. [10] R. Câmara and C. J. Griessenauer, "Anatomy of the Vagus Nerve," in Nerves and Nerve Injuries, 2015, pp. 385-397. [11] P. A. Low, "Autonomic nervous system function," J Clin Neurophysiol, vol. 10, no. 1, pp. 14-27, Jan 1993, doi: 10.1097/00004691-199301000-00003. [12] A. Zygmunt and J. Stanczyk, "Methods of evaluation of autonomic nervous system function," Arch Med Sci, vol. 6, no. 1, pp. 11-8, Mar 1 2010, doi: 10.5114/aoms.2010.13500. [13] E. A. Wehrwein, H. S. Orer, and S. M. Barman, "Overview of the Anatomy, Physiology, and Pharmacology of the Autonomic Nervous System," Compr Physiol, vol. 6, no. 3, pp. 1239-78, Jun 13 2016, doi: 10.1002/cphy.c150037. [14] K. Metzler-Wilson et al., "Augmented supraorbital skin sympathetic nerve activity responses to symptom trigger events in rosacea patients," J Neurophysiol, vol. 114, no. 3, pp. 1530-7, Sep 2015, doi: 10.1152/jn.00458.2015. [15] S. Kasama et al., "Effects of intravenous atrial natriuretic peptide on cardiac sympathetic nerve activity and left ventricular remodeling in patients with first anterior acute myocardial infarction," J Am Coll Cardiol, vol. 49, no. 6, pp. 667-74, Feb 13 2007, doi: 10.1016/j.jacc.2006.09.048. [16] S. Han et al., "Electroanatomic remodeling of the left stellate ganglion after myocardial infarction," J Am Coll Cardiol, vol. 59, no. 10, pp. 954-61, Mar 6 2012, doi: 10.1016/j.jacc.2011.11.030. [17] M. W. Chapleau and R. Sabharwal, "Methods of assessing vagus nerve activity and reflexes," Heart Fail Rev, vol. 16, no. 2, pp. 109-27, Mar 2011, doi: 10.1007/s10741-010-9174-6. [18] N. Tian, G. Liu, and R. Song, "Effect of Deep Breathing on Interaction between Sympathetic and Parasympathetic Activities," presented at the 2018 IEEE International Conference on Cyborg and Bionic Systems (CBS), 2018. [Online]. Available: https://ieeexplore.ieee.org/ielx7/8595708/8612140/08612291.pdf?tp=&arnumber=8612291&isnumber=8612140&ref=. [19] L. Xu et al., "Correlation between beat-to-beat blood pressure variability and arterial stiffness in healthy adults in the cold pressor test," Australas Phys Eng Sci Med, vol. 39, no. 4, pp. 977-985, Dec 2016, doi: 10.1007/s13246-015-0378-x. [20] Z. J. Schlader, M. C. O'Leary, J. R. Sackett, and B. D. Johnson, "Face cooling reveals a relative inability to increase cardiac parasympathetic activation during passive heat stress," Exp Physiol, vol. 103, no. 5, pp. 701-713, May 1 2018, doi: 10.1113/EP086865. [21] C. M. Brown, E. O. Sanya, and M. J. Hilz, "Effect of cold face stimulation on cerebral blood flow in humans," Brain Research Bulletin, vol. 61, no. 1, pp. 81-86, 2003, doi: 10.1016/s0361-9230(03)00065-0. [22] M. J. Hilz, B. Stemper, P. Sauer, U. Haertl, W. Singer, and F. B. Axelrod, "Cold face test demonstrates parasympathetic cardiac dysfunction in familial dysautonomia," Am J Physiol, vol. 276, no. 6, pp. R1833-9, Jun 1999, doi: 10.1152/ajpregu.1999.276.6.R1833. [23] "System and method for non-invasive autonomic nerve activity monitoring," [24] E. A. Robinson et al., "Estimating sympathetic tone by recording subcutaneous nerve activity in ambulatory dogs," J Cardiovasc Electrophysiol, vol. 26, no. 1, pp. 70-8, Jan 2015, doi: 10.1111/jce.12508. [25] A. Doytchinova et al., "Subcutaneous nerve activity and spontaneous ventricular arrhythmias in ambulatory dogs," Heart Rhythm, vol. 12, no. 3, pp. 612-620, Mar 2015, doi: 10.1016/j.hrthm.2014.11.007. [26] A. Doytchinova et al., "Simultaneous noninvasive recording of skin sympathetic nerve activity and electrocardiogram," Heart Rhythm, vol. 14, no. 1, pp. 25-33, Jan 2017, doi: 10.1016/j.hrthm.2016.09.019. [27] F. Shaffer and J. P. Ginsberg, "An Overview of Heart Rate Variability Metrics and Norms," Front Public Health, vol. 5, p. 258, 2017, doi: 10.3389/fpubh.2017.00258. [28] V. E. Shekh, E. I.-E. Ofoegbu, E. G. Adenuga, and L. S. Shchyrova, "Different LF and HF HRV responses to cold pressor test in normotensive and prehypertensive men," Biologija, vol. 64, no. 4, 2019, doi: 10.6001/biologija.v64i4.3903. [29] T. H. t. Everett, A. Doytchinova, Y. M. Cha, and P. S. Chen, "Recording sympathetic nerve activity from the skin," Trends Cardiovasc Med, vol. 27, no. 7, pp. 463-472, Oct 2017, doi: 10.1016/j.tcm.2017.05.003. [30] P.-S. Chen and S.-F. Lin, "System and method for non-invasive autonomic nerve activity monitoring," ed: Google Patents, 2015. [31] L. Bona Olexova et al., "Respiratory Sinus Arrhythmia as an Index of Cardiac Vagal Control in Mitral Valve Prolapse," Physiol Res, vol. 69, no. Suppl 1, pp. S161-S167, Mar 27 2020, doi: 10.33549/physiolres.934402. [32] J. P. Mortola, D. Marghescu, and R. Siegrist-Johnstone, "Thinking about breathing: Effects on respiratory sinus arrhythmia," Respir Physiol Neurobiol, vol. 223, pp. 28-36, Mar 2016, doi: 10.1016/j.resp.2015.12.004. [33] J. M. Prades et al., "Morphological and functional asymmetry of the human recurrent laryngeal nerve," Surg Radiol Anat, vol. 34, no. 10, pp. 903-8, Dec 2012, doi: 10.1007/s00276-012-0999-7. [34] S. Ogbonnaya and C. Kaliaperumal, "Vagal nerve stimulator: Evolving trends," J Nat Sci Biol Med, vol. 4, no. 1, pp. 8-13, Jan 2013, doi: 10.4103/0976-9668.107254. [35] E. Phelan, A. Potenza, C. Slough, D. Zurakowski, D. Kamani, and G. Randolph, "Recurrent laryngeal nerve monitoring during thyroid surgery: normative vagal and recurrent laryngeal nerve electrophysiological data," Otolaryngol Head Neck Surg, vol. 147, no. 4, pp. 640-6, Oct 2012, doi: 10.1177/0194599812447915.
|