跳到主要內容

臺灣博碩士論文加值系統

(100.28.0.143) 您好!臺灣時間:2024/07/19 17:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林宛萱
研究生(外文):Lin, Wan-Hsuan
論文名稱:快速製作親疏水圖形於玻璃基板表面探討液滴操作之生醫應用
論文名稱(外文):Development of droplet operation systems via gradient surface wettability
指導教授:李博仁李博仁引用關係
指導教授(外文):Li, Bor-Ran
學位類別:碩士
校院名稱:國立交通大學
系所名稱:生醫工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:109
語文別:中文
論文頁數:65
中文關鍵詞:開放式微流體超疏水性液滴操控
外文關鍵詞:Open surfaceSuperhydrophobicDroplet operation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:171
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
一般而言,微流體平台由封閉通道所組成,其中透過機械、氣動或電動方法來驅動液體,而開放式微流體主要透過改變表面化學組成或表面物理結構等處理,作為控制流體於開放式表面流動的方式。近年來開放式微流體因具有以下優勢而受到關注,像是不再有氣泡堵塞通道的問題、簡化了微流體系統之製造過程及控制系統、最重要的是可以減少試劑使用量及樣品消耗,達到降低成本及提供即時檢測等。為了確保在進行流體操控時開放式表面的生物樣品品質,透過於超疏水表面製造親水軌跡以表面改質的技術控制流體,雖然不會產生電、磁、熱等外部能量而對液滴內的生物樣品造成損傷,但其軌跡皆須使用黃光製程技術進行製造,此製程技術繁複且相當耗時,對於達到即時更改及軌跡製造並不具有高度的操作彈性。
本研究利用快速的表面改質技術及免黃光製程的方式製造親水軌跡,藉由製程的優化及搭配機械外力輔助的方式,加速流體於開放式表面的驅動以達到快速操控液滴的效果,並利用不同的液滴操作模式,展現此平台的多樣操作潛力。使用市售的疏水試劑作為玻璃表面改質材料,透過快速且高效率的方式,於一個小時完成超疏水表面製備,其表面具有透明、高均一性、高穩定性和易於大規模製造的特點,並依據不同需求,使用雷射取代黃光技術,於超疏水表面快速製造所需圖形,藉由不同的圖形設計,提供不同的液滴操作模式,即可執行液滴定向運輸、液滴混合、液滴濃縮等多樣性操作,以展現此平台的高度可塑性且發展潛力。透過簡易的表面製程、快速的圖形製造,提升整體操作之效率,降低檢測消耗的時間及人力,達到省時、低成本、高精準度之目標,有望在未來拓寬開放式微流體的應用,並朝 POC 快速檢測邁進。
Microfluidic devices are intended to manipulate trace volume liquid in miniaturized channels. In recent years, open microfluidics are taken attentions due to advantages such as reducing the consumption of reagents and samples, simplifying the integration processes and controlling system, and most important, be free from bubble clogging, which are disadvantages and causes leading to failure results in closed microfluidic.
We presented a fast and simple superhydrophobic modification approach on open surface platform to manipulate droplets including transport, mixing, concentration and rebounding control. Laser irradiation were fabricated on the superhydrophobic surface to create gradient hydrophilic micropatterns for controlling the droplets movement. With back-and-forth vibration on the predetermined paralleling patterns, droplets transport and mixing were successfully demonstrated to undergo simultaneously and 20 times more efficiently. Colorimetric activity of horseradish peroxidase (HRP) mixing with glycerol obviously improved the mixing efficiency and reduced the reaction time. Liquid concentration for glucose colorimetric of biochemical detection has a significant increase in sensitivity, the bioassay analytes can distribute homogeneously within the region of hydrophilic micropatterns and homogeneous deposit dots were obtained after droplet evaporation. It not only minimizes the coffee-ring effect but also enhances the uniformity. And discuss the surface wettability to control the droplet impacting and rebounding phenomenon. This study provides a rapid approch to modify a superhydrophobic film to perform droplet-based manipulations with low technical barrier, higher efficiency and easier operation, which is expected to broaden the applications of open microfluidics in the future world.
中文摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 VII
表目錄 IX
第一章、緒論 1
1.1 前言 1
1.2 表面潤濕性 2
1.3 超疏水表面 3
1.3.1 超疏水表面簡介 3
1.3.2 超疏水理論 4
1.3.3 超疏水表面製備技術 7
1.4 開放表面液滴驅動技術 12
1.4.1 外力驅動 12
1.4.2 表面結構 15
1.5 研究動機及目的 17
第二章、材料與方法 19
2.1 實驗材料 19
2.2 實驗設備與儀器 19
2.3 超疏水表面製備 20
2.3.1 超疏水表面改質材料 20
2.3.2 超疏水表面改質方法 20
2.3.3 超疏水表面測定 22
2.4 潤濕性圖案製造與設計 23
2.4.1 潤濕性圖案製造 23
2.4.2 液滴運輸之潤濕性圖案設計 25
2.4.3 液滴混合之潤濕性圖案設計 25
2.4.4 液滴濃縮之潤濕性圖案設計 26
2.5 液滴操控驅動系統 27
2.5.1 驅動平台之機構設計 27
2.5.2 驅動液滴之工作原理 28
2.6 辣根過氧化酶之比色檢測 30
2.6.1 辣根過氧化酶酵素反應 30
2.6.2 溶液製備及實驗步驟 31
2.7 葡萄糖氧化反應之比色檢測 31
2.7.1 葡萄糖氧化反應 31
2.7.2 溶液製備及實驗步驟 32
2.8 影像分析及圖表繪製 33
第三章、結果與討論 34
3.1 超疏水薄膜之參數最佳化探討 34
3.1.1 超疏水試劑使用量之測定及表面均一性探討 34
3.1.2 液滴運輸之潤濕性圖案建構 36
3.1.3 液滴運輸圖案之表面潤濕性測定 39
3.2 超疏水薄膜之特性 40
3.2.1 超疏水表面薄膜 40
3.2.2 超疏水表面之穩定性 42
3.2.3 超疏水表面之穿透性 42
3.3 液滴運輸及混合操控 44
3.3.1 液滴運輸之控制 44
3.3.2 液滴混合之處理 45
3.3.3 液滴混合之色素模擬分析 47
3.3.4 液滴於超疏水平台混合之應用 49
3.4 液滴濃縮操控 51
3.4.1 液滴濃縮之色素模擬分析 52
3.4.2 液滴濃縮於超疏水平台之比色檢測應用 56
3.5 液滴撞擊於具有潤濕性圖案之回彈現象探討 57
3.5.1 液滴撞擊彈跳現象 58
3.5.2 液滴撞擊潤濕性圖案結果分析 59
第四章、結論與未來展望 60
4.1 結論 60
4.2 未來展望 60
參考文獻 61
1 Berthier, E., Dostie, A. M., Lee, U. N., Berthier, J. & Theberge, A. B. Open microfluidic capillary systems. Analytical Chemistry 91, 8739-8750 (2019).
2 Jung, W., Han, J., Choi, J.-W. & Ahn, C. H. Point-of-care testing (POCT) diagnostic systems using microfluidic lab-on-a-chip technologies. Microelectronic Engineering 132, 46-57 (2015).
3 Reyes, D. R., Iossifidis, D., Auroux, P.-A. & Manz, A. Micro total analysis systems. 1. Introduction, theory, and technology. Analytical Chemistry 74, 2623-2636 (2002).
4 Nguyen, N.-T., Shaegh, S. A. M., Kashaninejad, N. & Phan, D.-T. Design, fabrication and characterization of drug delivery systems based on lab-on-a-chip technology. Advanced Drug Delivery Reviews 65, 1403-1419 (2013).
5 Wolfs, M., Darmanin, T. & Guittard, F. Superhydrophobic fibrous polymers. Polymer Reviews 53, 460-505 (2013).
6 Jeevahan, J., Chandrasekaran, M., Joseph, G. B., Durairaj, R. & Mageshwaran, G. Superhydrophobic surfaces: a review on fundamentals, applications, and challenges. Journal of Coatings Technology and Research 15, 231-250 (2018).
7 Barthlott, W. & Neinhuis, C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202, 1-8 (1997).
8 Wei, P. J., Chen, S. C. & Lin, J. F. Adhesion forces and contact angles of water strider legs. Langmuir 25, 1526-1528 (2009).
9 Gao, X. & Jiang, L. Water-repellent legs of water striders. Nature 432, 36-36 (2004).
10 Feng, L. et al. Super‐hydrophobic surfaces: from natural to artificial. Advanced Materials 14, 1857-1860 (2002).
11 Liu, K. & Jiang, L. Bio-inspired self-cleaning surfaces. Annual Review of Materials Research 42, 231-263 (2012).
12 Ganesh, V. A., Raut, H. K., Nair, A. S. & Ramakrishna, S. A review on self-cleaning coatings. Journal of Materials Chemistry 21, 16304-16322 (2011).
13 Celia, E., Darmanin, T., de Givenchy, E. T., Amigoni, S. & Guittard, F. Recent advances in designing superhydrophobic surfaces. Journal of Colloid and Interface Science 402, 1-18 (2013).
14 Wen, Q. & Guo, Z. Recent advances in the fabrication of superhydrophobic surfaces. Chemistry Letters 45, 1134-1149 (2016).
15 Sas, I., Gorga, R. E., Joines, J. A. & Thoney, K. A. Literature review on superhydrophobic self‐cleaning surfaces produced by electrospinning. Journal of Polymer Science Part B: Polymer Physics 50, 824-845 (2012).
16 Wenzel, R. N. Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry 28, 988-994 (1936).
17 Cassie, A. & Baxter, S. Wettability of porous surfaces. Transactions of the Faraday society 40, 546-551 (1944).
18 Roach, P., Shirtcliffe, N. J. & Newton, M. I. Progess in superhydrophobic surface development. Soft Matter 4, 224-240 (2008).
19 Hou, W. & Wang, Q. Stable polytetrafluoroethylene superhydrophobic surface with lotus-leaf structure. Journal of Colloid and Interface Science 333, 400-403 (2009).
20 Deng, X., Mammen, L., Butt, H.-J. & Vollmer, D. Candle soot as a template for a transparent robust superamphiphobic coating. Science 335, 67-70 (2012).
21 Öner, D. & McCarthy, T. J. Ultrahydrophobic surfaces. Effects of topography length scales on wettability. Langmuir 16, 7777-7782 (2000).
22 Qi, Y., Cui, Z., Liang, B., Parnas, R. S. & Lu, H. A fast method to fabricate superhydrophobic surfaces on zinc substrate with ion assisted chemical etching. Applied Surface Science 305, 716-724 (2014).
23 Vilaró, I., Yagüe, J. L. & Borrós, S. Superhydrophobic copper surfaces with anticorrosion properties fabricated by solventless CVD methods. ACS Applied Materials & Interfaces 9, 1057-1065 (2017).
24 Gao, H., Lu, S., Xu, W., Szunerits, S. & Boukherroub, R. Controllable fabrication of stable superhydrophobic surfaces on iron substrates. Rsc Advances 5, 40657-40667 (2015).
25 Peng, Y.-T., Lo, K.-F. & Juang, Y.-J. Constructing a Superhydrophobic Surface on Polydimethylsiloxane via Spin Coating and Vapor− Liquid Sol− Gel Process. Langmuir 26, 5167-5171 (2010).
26 Sun, M., Li, X., Ding, B., Yu, J. & Sun, G. Mechanical and wettable behavior of polyacrylonitrile reinforced fibrous polystyrene mats. Journal of Colloid and Interface Science 347, 147-152 (2010).
27 Holmes, H. R. & Böhringer, K. F. Transporting droplets through surface anisotropy. Microsystems & Nanoengineering 1, 15022 (2015).
28 Nelson, W. C. & Kim, C.-J. C. Droplet actuation by electrowetting-on-dielectric (EWOD): A review. Journal of Adhesion Science and Technology 26, 1747-1771 (2012).
29 Gong, J. All-electronic droplet generation on-chip with real-time feedback control for EWOD digital microfluidics. Lab on a Chip 8, 898-906 (2008).
30 Sun, D. & Böhringer, K. F. Self-cleaning: from bio-inspired surface modification to MEMS/Microfluidics system integration. Micromachines 10, 101 (2019).
31 Choi, K., Ng, A. H., Fobel, R. & Wheeler, A. R. Digital microfluidics. Annual Review of Analytical Chemistry 5, 413-440 (2012).
32 Chiou, P.-Y., Chang, Z. & Wu, M. C. Droplet manipulation with light on optoelectrowetting device. Journal of Microelectromechanical Systems 17, 133-138 (2008).
33 Zhang, Y. & Nguyen, N.-T. Magnetic digital microfluidics–a review. Lab on a Chip 17, 994-1008 (2017).
34 Long, Z., Shetty, A. M., Solomon, M. J. & Larson, R. G. Fundamentals of magnet-actuated droplet manipulation on an open hydrophobic surface. Lab on a Chip 9, 1567-1575 (2009).
35 Chen, G. et al. Towards the rapid and efficient mixing on'open-surface'droplet-based microfluidics via magnetic actuation. Sensors and Actuators B: Chemical 286, 181-190 (2019).
36 Ding, X. et al. Surface acoustic wave microfluidics. Lab on a Chip 13, 3626-3649 (2013).
37 Franke, T., Abate, A. R., Weitz, D. A. & Wixforth, A. Surface acoustic wave (SAW) directed droplet flow in microfluidics for PDMS devices. Lab on a Chip 9, 2625-2627 (2009).
38 Shastry, A., Case, M. J. & Böhringer, K. F. Directing droplets using microstructured surfaces. Langmuir 22, 6161-6167 (2006).
39 Duncombe, T. A., Erdem, E. Y., Shastry, A., Baskaran, R. & Böhringer, K. F. Controlling liquid drops with texture ratchets. Advanced Materials 24, 1545-1550 (2012).
40 Morrissette, J. M., Mahapatra, P. S., Ghosh, A., Ganguly, R. & Megaridis, C. M. Rapid, self-driven liquid mixing on open-surface microfluidic platforms. Scientific Reports 7, 1-13 (2017).
41 Ghosh, A., Ganguly, R., Schutzius, T. M. & Megaridis, C. M. Wettability patterning for high-rate, pumpless fluid transport on open, non-planar microfluidic platforms. Lab on a Chip 14, 1538-1550 (2014).
42 Kong, T., Brien, R., Njus, Z., Kalwa, U. & Pandey, S. Motorized actuation system to perform droplet operations on printed plastic sheets. Lab on a Chip 16, 1861-1872 (2016).
43 Li, H. et al. Spontaneous droplets gyrating via asymmetric self-splitting on heterogeneous surfaces. Nature Communications 10, 1-6 (2019).
44 Chu, F. et al. Directional transportation of impacting droplets on wettability-controlled surfaces. Langmuir (2020).
45 Nguyen, T., Mouterde, T., Takahashi, H., Quéré, D. & Shimoyama, I. in 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS). 95-98 (IEEE).
46 Park, Y., Jeon, J. & Chung, S. K. in 2018 IEEE Micro Electro Mechanical Systems (MEMS). 1283-1285 (IEEE).
47 Renard, C., Leclercq, L., Stocco, A. & Cottet, H. Superhydrophobic capillary coatings: Elaboration, characterization and application to electrophoretic separations. Journal of Chromatography A 1603, 361-370 (2019).
48 Vakarelski, I. U., Patankar, N. A., Marston, J. O., Chan, D. Y. & Thoroddsen, S. T. Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces. Nature 489, 274-277 (2012).
49 Dettre, R. H. & Johnson Jr, R. E. Contact angle hysteresis. IV. Contact angle measurements on heterogeneous surfaces1. The Journal of Physical Chemistry 69, 1507-1515 (1965).
50 Huhtamäki, T., Tian, X., Korhonen, J. T. & Ras, R. H. Surface-wetting characterization using contact-angle measurements. Nature Protocols 13, 1521-1538 (2018).
51 Chen, Y. et al. Superwettable microchips with improved spot homogeneity toward sensitive biosensing. Biosensors and Bioelectronics 102, 418-424 (2018).
52 Li, Y.-F., Sheng, Y.-J. & Tsao, H.-K. Evaporation stains: suppressing the coffee-ring effect by contact angle hysteresis. Langmuir 29, 7802-7811 (2013).
53 Qi, L., Niu, Y., Ruck, C. & Zhao, Y. Mechanical-activated digital microfluidics with gradient surface wettability. Lab on a Chip 19, 223-232 (2019).
54 Adams, J. C. Heavy metal intensification of DAB-based HRP reaction product. Journal of Histochemistry & Cytochemistry 29, 775-775 (1981).
55 Olucha, F., Martínez-García, F. & López-García, C. A new stabilizing agent for the tetramethyl benzidine (TMB) reaction product in the histochemical detection of horseradish peroxidase (HRP). Journal of Neuroscience Methods 13, 131-138 (1985).
56 Martins, S. I. & Van Boekel, M. A. A kinetic model for the glucose/glycine Maillard reaction pathways. Food Chemistry 90, 257-269 (2005).
57 Bateman Jr, R. C. & Evans, J. A. Using the glucose oxidase/peroxidase system in enzyme kinetics. Journal of Chemical Education 72, A240 (1995).
58 Bankar, S. B., Bule, M. V., Singhal, R. S. & Ananthanarayan, L. Glucose oxidase—an overview. Biotechnology Advances 27, 489-501 (2009).
59 Wilson, R. & Turner, A. Glucose oxidase: an ideal enzyme. Biosensors and Bioelectronics 7, 165-185 (1992).
60 Koc, Y. et al. Nano-scale superhydrophobicity: suppression of protein adsorption and promotion of flow-induced detachment. Lab on a Chip 8, 582-586 (2008).
61 Jokinen, V., Kankuri, E., Hoshian, S., Franssila, S. & Ras, R. H. Superhydrophobic blood‐repellent surfaces. Advanced Materials 30, 1705104 (2018).
62 Boda, S. K., Li, X. & Xie, J. Electrospraying an enabling technology for pharmaceutical and biomedical applications: A review. Journal of Aerosol Science 125, 164-181 (2018).
63 Zhang, X., Shi, F., Niu, J., Jiang, Y. & Wang, Z. Superhydrophobic surfaces: from structural control to functional application. Journal of Materials Chemistry 18, 621-633 (2008).
64 Bravo, J., Zhai, L., Wu, Z., Cohen, R. E. & Rubner, M. F. Transparent superhydrophobic films based on silica nanoparticles. Langmuir 23, 7293-7298 (2007).
電子全文 電子全文(網際網路公開日期:20250904)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top