跳到主要內容

臺灣博碩士論文加值系統

(44.192.94.177) 您好!臺灣時間:2024/07/16 23:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳映蓁
研究生(外文):Ying-Jen Wu
論文名稱:2019年春季泰國北部無人機觀測實驗: 邊界層特徵與氣膠垂直分布之研究
論文名稱(外文):PBL characteristics and aerosol vertical distribution in northern Thailand during an UAV field campaign in spring 2019
指導教授:王聖翔王聖翔引用關係
指導教授(外文):Sheng-Hsiang Wang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:大氣科學學系
學門:自然科學學門
學類:大氣科學學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:113
中文關鍵詞:無人機邊界層-氣膠交互作用
外文關鍵詞:Unmanned aerial vehiclesPBL-Aerosol interaction
相關次數:
  • 被引用被引用:1
  • 點閱點閱:179
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
泰國北部在春季因人為砍伐、森林大火和燃燒農作物,造成大量的生質燃燒氣膠排放,影響此區域的空氣品質,雖然近年來國際「七海研究計畫」 (The Seven SouthEast Asian Studies,7-SEAS)透過地面採樣、地面遙測、衛星遙測和模式模擬等技術,對泰北生質燃燒氣膠特徵與長程傳送特性有一定的掌握,但由於缺少高解析度的垂直現地量測,尚無法完整建構生質燃燒源區之氣膠在當地排放後如何向上傳送,並傳送至下游的機制。因此本研究為架構在7-SEAS的研究框架下,於2019年3月10-30日在泰國北部清邁府芳縣(Fang)進行密集無人機垂直觀測實驗,取得84組有效的高解析度氣象與氣膠垂直剖面資料,並搭配地面現地量測以及MERRA-2再分析資料,探討邊界層氣象與生質燃燒氣膠的交互作用,本研究運用密集的無人機垂直觀測資料進行分析,以補足前人對中南半島研究缺乏的垂直高解析度觀測,嘗試解析出泰國北部邊界層典型特徵,以及污染物從累積到消散的機制,對當地生質燃燒氣膠與邊界層的研究進展有極大幫助。
研究結果顯示,晨間於逆溫層下方約200-400公尺處出現東風伴隨高PM2.5濃度,此結構隨邊界層發展而向上抬升,午後較強的西風將亂流動量帶進山谷內的邊界層,此時西風與邊界層的交界面產生亂流並往下傳送,促使山谷內的污染物向上混和,有利PM2.5污染物垂直擴散,並藉由較高風速的西風持續向東傳送,使地面PM2.5濃度小時平均由11時的257 μg m-3下降至16時的137 μg m-3。然而上述過程在高污染日3/15、3/24、3/30並不明顯,主要是由於邊界層穩定的垂直結構使得混和作用不強,導致污染物無法向上混和而累積於約距地400公尺以下處,高污染日地面PM2.5濃度日平均分別為278 μg m-3、297 μg m-3、378 μg m-3。進一步藉由三個個案分析發現,主導高污染事件的綜觀天氣系統含700 hPa上空高壓環流、700 hPa西風帶和鋒面系統之間的時空演變,其中個案一與個案二的綜觀天氣系統特徵較為相似,皆是槽前的穩定西北氣流促使污染物的累積,以及槽後的西南風促使污染物的消散,而個案三則是受到位於槽前的西北氣流以及南海上方高壓環流所帶來的南風影響,使得污染物累積快速,嚴重影響當地空氣品質。整體而言,本研究運用密集的無人機垂直觀測資料進行分析,補足前人對中南半島研究缺乏的垂直高解析度觀測,對當地生質燃燒氣膠與邊界層的研究進展有極大幫助,為7-SEAS一系列研究提供嶄新的觀點。
Air quality in Southeast Asia is heavily impacted by biomass burning aerosols emitted from forest fires and burning crops. Although “Seven South East Asian Studies” (7-SEAS) has used ground sampling, ground and satellite remote sensing, and model simulations to characterize aerosols and long-range pollution transport, due to a lack of high-resolution vertical in-situ measurements, the mechanism for lifting aerosols in the source area and transporting them downwind has not been fully elucidated. Therefore, this study built on the research framework of 7-SEAS, and conducted intensive UAV vertical observation experiments to explore the interaction between planetary boundary layer (PBL) meteorology and biomass burning aerosols in Fang, Chiang Mai, Thailand from March 10th to 30th, 2019. In total, 84 sets of high-resolution meteorological and aerosol vertical profile data were obtained and combined with ground in-situ measurements and MERRA-2 reanalysis data. This study aimed to analyze the typical PBL characteristics in northern Thailand, and the mechanisms of pollutant accumulation and dispersion.
The results showed that, in the morning, there were easterly winds and high PM2.5 concentration below the inversion layer, and this structure was lifted up with the development of the PBL. In the afternoon, strong westerly winds brought turbulent flow into the PBL in the valley. The turbulent flow was transmitted downwards and promoted the upward mixing and dispersion of pollutants. Meanwhile, westerly winds continued to transported the pollutants eastward. The average hourly ground PM2.5 concentration was dropped from 257 μg m-3 at 11 a.m. to 137 μg m-3 at 4 p.m. However, this process was not obvious on high pollution days on 3/15, 3/24, and 3/30, primarily due to a stable vertical structure of the PBL, which led to weak mixing and poor dispersion; pollutants accumulated below about 400 m. The daily average concentrations of ground PM2.5 on high pollution days were 278 μg m-3, 297 μg m-3, and 378 μg m-3, respectively. Through further analysis of three case studies, it was found that high-pollution events can be described by the spatiotemporal evolution between a high-pressure system at 700 hPa, westerly wind at 700 hPa and a frontal system over the region. In Case 1 and 2, a northwest wind behind the trough promoted the accumulation of the pollutants and a southwest wind behind the trough promoted the dispersion of the pollutants, while in Case 3 a northwest wind behind the trough and south wind brought by a high-pressure system above the South China Sea, which to greater pollutant accumulation and seriously degraded local air quality. On the whole, this study used intensive UAV vertical observation data for analysis, which were lacking in previous research efforts in Southeast Asia. This work represents significant research progress for local biomass burning aerosols and PBL issues, and provides a new perspective for Southeast Asia studies.
摘要 i
Abstract iii
誌謝 v
目錄 vi
圖目錄 viii
表目錄 xi
一、 前言 1
1-1 研究動機 1
1-2 研究目的 2
二、 文獻回顧 3
2-1 無人機觀測應用回顧 3
2-2 大氣邊界層 5
2-3 氣膠與邊界層相關研究 6
2-4 7-SEAS相關文獻回顧 8
三、 研究方法 11
3-1 觀測時間、地點與當地氣候條件 11
3-2 無人機酬載儀器與觀測方法 14
3-3 無人機資料處理與穩定度計算 19
3-4 地面觀測儀器 20
3-5 再分析資料選用 24
3-6 衛星資料選用 26
四、 結果與討論 28
4-1 酬載儀器誤差來源分析與討論 28
4-1-1 無人機酬載儀器、地面儀器及再分析資料比對 28
4-1-2 無人機酬載儀器資料特性及誤差來源評估 33
4-1-3 無人機風場反演法之準確性評估 38
4-2 氣象場與空品時序分析 40
4-3 無人機觀測之垂直剖面日變化分析 51
4-4 個案分析 56
4-4-1 個案一 (2019/03/13-03/17) 56
4-4-2 個案二 (2019/03/23-03/25) 65
4-4-3 個案三 (2019/03/29-03/31) 73
4-4-4 污染個案成因之分析與討論 80
4-5 邊界層污染物累積與消散機制 83
五、 結論與未來展望 86
5-1 結論 86
5-2 未來展望 87
參考文獻 89
附錄A 本實驗飛行架次與酬載儀器表 95
Ackerman, A. S., Kirkpatrick, M. P., Stevens, D. E., & Toon, O. B. (2004). The impact of humidity above stratiform clouds on indirect aerosol climate forcing. Nature, 432(7020), 1014-1017
Albrecht, B. A. (1989). Aerosols, cloud microphysics, and fractional cloudiness. Science, 245(4923), 1227-1230
Altstädter, B., Platis, A., Wehner, B., Scholtz, A., Wildmann, N., Hermann, M., . . . Lampert, A. (2015). ALADINA – an unmanned research aircraft for observing vertical and horizontal distributions of ultrafine particles within the atmospheric boundary layer. Atmospheric Measurement Techniques, 8(4), 1627-1639. doi: 10.5194/amt-8-1627-2015
Babu, S. S., Satheesh, S., & Moorthy, K. K. (2002). Aerosol radiative forcing due to enhanced black carbon at an urban site in India. Geophysical Research Letters, 29(18), 27-21-27-24
Berg, L. K., Fast, J. D., Barnard, J. C., Burton, S. P., Cairns, B., Chand, D., . . . Flynn, C. J. (2016). The Two‐Column Aerosol Project: Phase I—Overview and impact of elevated aerosol layers on aerosol optical depth. Journal of Geophysical Research: Atmospheres, 121(1), 336-361
Bonin, T., Chilson, P., Zielke, B., & Fedorovich, E. (2013). Observations of the Early Evening Boundary-Layer Transition Using a Small Unmanned Aerial System. Boundary-Layer Meteorology, 146(1), 119-132. doi: 10.1007/s10546-012-9760-3
Brosy, C., Krampf, K., Zeeman, M., Wolf, B., Junkermann, W., Schäfer, K., . . . Kunstmann, H. (2017). Simultaneous multicopter-based air sampling and sensing of meteorological variables. Atmospheric Measurement Techniques, 10(8), 2773-2784. doi: 10.5194/amt-10-2773-2017
Cappa, C. D., Onasch, T. B., Massoli, P., Worsnop, D. R., Bates, T. S., Cross, E. S., . . . Jobson, B. T. (2012). Radiative absorption enhancements due to the mixing state of atmospheric black carbon. Science, 337(6098), 1078-1081
Cheng, Y.-H., & Lin, M.-H. (2013). Real-time performance of the microAeth® AE51 and the effects of aerosol loading on its measurement results at a traffic site. Aerosol Air Qual. Res, 13(6), 1853-1863
Colarco, P., da Silva, A., Chin, M., & Diehl, T. (2010). Online simulations of global aerosol distributions in the NASA GEOS‐4 model and comparisons to satellite and ground‐based aerosol optical depth. Journal of Geophysical Research: Atmospheres, 115(D14)
Corrigan, C., Roberts, G., Ramana, M., Kim, D., & Ramanathan, V. (2008). Capturing vertical profiles of aerosols and black carbon over the Indian Ocean using autonomous unmanned aerial vehicles
de Boer, G., Palo, S., Argrow, B., LoDolce, G., Mack, J., Gao, R.-S., . . . Hock, T. (2016). The Pilatus unmanned aircraft system for lower atmospheric research. Atmospheric Measurement Techniques, 9(4), 1845-1857. doi: 10.5194/amt-9-1845-2016
Diaz, J. A., Pieri, D., Arkin, C. R., Gore, E., Griffin, T. P., Fladeland, M., . . . Achí, S. (2010). Utilization of in situ airborne MS-based instrumentation for the study of gaseous emissions at active volcanoes. International Journal of Mass Spectrometry, 295(3), 105-112. doi: 10.1016/j.ijms.2010.04.013
Ding, A., Huang, X., Nie, W., Sun, J., Kerminen, V. M., Petäjä, T., . . . Wang, M. (2016). Enhanced haze pollution by black carbon in megacities in China. Geophysical Research Letters, 43(6), 2873-2879
Duncan, B. N., Martin, R. V., Staudt, A. C., Yevich, R., & Logan, J. A. (2003). Interannual and seasonal variability of biomass burning emissions constrained by satellite observations. Journal of Geophysical Research: Atmospheres, 108(D2), ACH 1-1-ACH 1-22
Eck, T. F., Holben, B., Reid, J., Dubovik, O., Smirnov, A., O'neill, N., . . . Kinne, S. (1999). Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. Journal of Geophysical Research: Atmospheres, 104(D24), 31333-31349
Egger, J., Bajrachaya, S., Heinrich, R., Kolb, P., Lämmlein, S., Mech, M., . . . Wendt, H. (2002). Diurnal Winds in the Himalayan Kali Gandaki Valley. Part III: Remotely Piloted Aircraft Soundings. Monthly Weather Review, 130(8), 2042-2058. doi: 10.1175/1520-0493(2002)130<2042:Dwithk>2.0.Co;2
Eva, H., & Lambin, E. F. (1998). Remote sensing of biomass burning in tropical regions: Sampling issues and multisensor approach. Remote sensing of environment, 64(3), 292-315
Ferrero, L., Castelli, M., Ferrini, B., Moscatelli, M., Perrone, M., Sangiorgi, G., . . . Scardazza, F. (2014). Impact of black carbon aerosol over Italian basin valleys: high-resolution measurements along vertical profiles, radiative forcing and heating rate
Hennigan, C. J., Westervelt, D. M., Riipinen, I., Engelhart, G. J., Lee, T., Collett, J. L., . . . Robinson, A. L. (2012). New particle formation and growth in biomass burning plumes: An important source of cloud condensation nuclei. Geophysical Research Letters, 39(9), n/a-n/a. doi: 10.1029/2012gl050930
Howard, L. N. (1961). Note on a paper of John W. Miles. Journal of Fluid Mechanics, 10(4), 509-512
Hsu, N. C., Herman, J. R., & Tsay, S. C. (2003). Radiative impacts from biomass burning in the presence of clouds during boreal spring in southeast Asia. Geophysical Research Letters, 30(5)
Huang, X., Wang, Z., & Ding, A. (2018). Impact of aerosol‐PBL interaction on haze pollution: Multiyear observational evidences in North China. Geophysical Research Letters, 45(16), 8596-8603
Jacobson, M. Z., & Kaufman, Y. J. (2006). Wind reduction by aerosol particles. Geophysical Research Letters, 33(24)
Johnson, B., Shine, K., & Forster, P. (2004). The semi‐direct aerosol effect: Impact of absorbing aerosols on marine stratocumulus. Quarterly Journal of the Royal Meteorological Society, 130(599), 1407-1422
Justice, C., Giglio, L., Korontzi, S., Owens, J., Morisette, J., Roy, D., . . . Kaufman, Y. (2002). The MODIS fire products. Remote sensing of Environment, 83(1-2), 244-262
Ke, L.-J. (2018). 開發適用於大氣邊界層觀測的無人機系統. National Central University.
Lin, N.-H., Tsay, S.-C., Maring, H. B., Yen, M.-C., Sheu, G.-R., Wang, S.-H., . . . Liu, G.-R. (2013). An overview of regional experiments on biomass burning aerosols and related pollutants in Southeast Asia: From BASE-ASIA and the Dongsha Experiment to 7-SEAS. Atmospheric Environment, 78, 1-19. doi: 10.1016/j.atmosenv.2013.04.066
Martin, S., Bange, J., & Beyrich, F. (2011). Meteorological profiling of the lower troposphere using the research UAV" M 2 AV Carolo". Atmospheric Measurement Techniques, 4(4), 705-716
Miles, J. W. (1961). On the stability of heterogeneous shear flows. Journal of Fluid Mechanics, 10(4), 496-508
Mueller, D., Sawamura, P., Moore, R. H., Burton, S. P., Chemyakin, E., Kolgotin, A., . . . Beyersdorf, A. J. (2017). HSRL-2 aerosol optical measurements and microphysical retrievals vs. airborne in situ measurements during DISCOVER-AQ 2013:: an intercomparison study. Atmospheric Chemistry and Physics
Naud, C. M., Booth, J. F., & Del Genio, A. D. (2016). The relationship between boundary layer stability and cloud cover in the post-cold-frontal region. Journal of climate, 29(22), 8129-8149
Neumann, P. P., & Bartholmai, M. (2015). Real-time wind estimation on a micro unmanned aerial vehicle using its inertial measurement unit. Sensors and Actuators A: Physical, 235, 300-310. doi: 10.1016/j.sna.2015.09.036
Nikandrova, A., Tabakova, K., Manninen, A., Väänänen, R., Petäjä, T., Kulmala, M., . . . O'Connor, E. (2018). Combining airborne in situ and ground-based lidar measurements for attribution of aerosol layers. Atmospheric Chemistry and Physics, 18(14), 10575-10591. doi: 10.5194/acp-18-10575-2018
Petäjä, T., Järvi, L., Kerminen, V.-M., Ding, A., Sun, J., Nie, W., . . . Fu, C. (2016). Enhanced air pollution via aerosol-boundary layer feedback in China. Scientific reports, 6(1), 1-6
Phillips, C., Holz, R., Eloranta, E. W., Reid, J. S., Kim, S.-W., Kuehn, R., & Marais, W. (2017). Using long-term ground-based HSRL and geostationary observations in combination with model re-analysis to help disentangle local and long-range transported aerosols in Seoul, South Korea. AGUFM, 2017, A12D-02
Pistone, K., Praveen, P., Thomas, R., Ramanathan, V., Wilcox, E., & Bender, F.-M. (2015). Observed correlations between aerosol and cloud properties in an Indian Ocean trade cumulus regime. Atmospheric Chemistry & Physics Discussions, 15(20)
Quan, J., Gao, Y., Zhang, Q., Tie, X., Cao, J., Han, S., . . . Zhao, D. (2013). Evolution of planetary boundary layer under different weather conditions, and its impact on aerosol concentrations. Particuology, 11(1), 34-40
Ramana, M. V., Ramanathan, V., Kim, D., Roberts, G. C., & Corrigan, C. E. (2007). Albedo, atmospheric solar absorption and heating rate measurements with stacked UAVs. Quarterly Journal of the Royal Meteorological Society, 133(629), 1913-1931. doi: 10.1002/qj.172
Ramanathan, Ramana, M. V., Praveen, P. S., Kim, D., Corrigan, C. E., Nguyen, H., . . . Yoon, S. C. (2007). Atmospheric brown clouds: Hemispherical and regional variations in long-range transport, absorption, and radiative forcing. Journal of Geophysical Research, 112(D22). doi: 10.1029/2006jd008124
Ramanathan, V., Ramana, M. V., Roberts, G., Kim, D., Corrigan, C., Chung, C., & Winker, D. (2007). Warming trends in Asia amplified by brown cloud solar absorption. Nature, 448(7153), 575-578. doi: 10.1038/nature06019
Reid, Hyer, E. J., Johnson, R. S., Holben, B. N., Yokelson, R. J., Zhang, J., . . . Giglio, L. (2013). Observing and understanding the Southeast Asian aerosol system by remote sensing: An initial review and analysis for the Seven Southeast Asian Studies (7SEAS) program. Atmospheric Research, 122, 403-468
Reid, Koppmann, R., Eck, T., & Eleuterio, D. (2005). A review of biomass burning emissions part II: intensive physical properties of biomass burning particles. Atmospheric Chemistry and Physics, 5(3), 799-825
Rennó, N. O., & Williams, E. R. (1995). Quasi-Lagrangian Measurements in Convective Boundary Layer Plumes and Their Implications for the Calculation of CAPE. Monthly Weather Review, 123(9), 2733-2742. doi: 10.1175/1520-0493(1995)123<2733:Qlmicb>2.0.Co;2
Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., . . . Kim, G.-K. (2011). MERRA: NASA’s modern-era retrospective analysis for research and applications. Journal of climate, 24(14), 3624-3648
Samset, B., Myhre, G., Herber, A., Kondo, Y., Li, S.-M., Moteki, N., . . . Balkanski, Y. (2014). Modelled black carbon radiative forcing and atmospheric lifetime in AeroCom Phase II constrained by aircraft observations. Atmospheric Chemistry and Physics, 14(22)
Samset, B. H., & Myhre, G. (2011). Vertical dependence of black carbon, sulphate and biomass burning aerosol radiative forcing. Geophysical Research Letters, 38(24)
Sanchez, K. J., Roberts, G. C., Calmer, R., Nicoll, K., Hashimshoni, E., Rosenfeld, D., . . . Russell, L. M. (2017). Top-down and bottom-up aerosol–cloud closure: towards understanding sources of uncertainty in deriving cloud shortwave radiative flux. Atmospheric Chemistry and Physics, 17(16), 9797-9814. doi: 10.5194/acp-17-9797-2017
Sayer, A. M., Hsu, N. C., Hsiao, T.-C., Pantina, P., Kuo, F., Ou-Yang, C.-F., . . . Lin, N.-H. (2016). In-Situ and Remotely-Sensed Observations of Biomass Burning Aerosols at Doi Ang Khang, Thailand during 7-SEAS/BASELInE 2015. Aerosol and Air Quality Research, 16(11), 2786-2801. doi: 10.4209/aaqr.2015.08.0500
Sheu, G.-R., Lin, N.-H., Wang, J.-L., Lee, C.-T., Yang, C.-F. O., & Wang, S.-H. (2010). Temporal distribution and potential sources of atmospheric mercury measured at a high-elevation background station in Taiwan. Atmospheric Environment, 44(20), 2393-2400
Song, Z., Fu, D., Zhang, X., Wu, Y., Xia, X., He, J., . . . Che, H. (2018). Diurnal and seasonal variability of PM2.5 and AOD in North China plain: Comparison of MERRA-2 products and ground measurements. Atmospheric Environment, 191, 70-78. doi: 10.1016/j.atmosenv.2018.08.012
Stull, R. B. (2012). An introduction to boundary layer meteorology (Vol. 13): Springer Science & Business Media.
Tateo, A., Miglietta, M. M., Fedele, F., Menegotto, M., Monaco, A., & Bellotti, R. (2017). Ensemble using different Planetary Boundary Layer schemes in WRF model for wind speed and direction prediction over Apulia region. Advances in Science and Research, 14, 95-102. doi: 10.5194/asr-14-95-2017
Tsay, S.-C., Hsu, N. C., Lau, W. K.-M., Li, C., Gabriel, P. M., Ji, Q., . . . Janjai, S. (2013). From BASE-ASIA toward 7-SEAS: A satellite-surface perspective of boreal spring biomass-burning aerosols and clouds in Southeast Asia. Atmospheric environment, 78, 20-34
Tsay, S.-C., Maring, H. B., Lin, N.-H., Buntoung, S., Chantara, S., Chuang, H.-C., . . . Hsiao, T.-C. (2016). Satellite-surface perspectives of air quality and aerosol-cloud effects on the environment: An overview of 7-SEAS/BASELInE. Aerosol and Air Quality Research, 16(11), 2581-2602
Twomey, S. (1977). The influence of pollution on the shortwave albedo of clouds. Journal of the atmospheric sciences, 34(7), 1149-1152
Venkataraman, C., Habib, G., Kadamba, D., Shrivastava, M., Leon, J. F., Crouzille, B., . . . Streets, D. (2006). Emissions from open biomass burning in India: Integrating the inventory approach with high‐resolution Moderate Resolution Imaging Spectroradiometer (MODIS) active‐fire and land cover data. Global biogeochemical cycles, 20(2)
Wai, K. M., Lin, N. H., Wang, S. H., & Dokiya, Y. (2008). Rainwater chemistry at a high‐altitude station, Mt. Lulin, Taiwan: Comparison with a background station, Mt. Fuji. Journal of Geophysical Research: Atmospheres, 113(D6)
Wang, Huang, X., & Ding, A. (2018). Dome effect of black carbon and its key influencing factors: a one-dimensional modelling study. Atmospheric Chemistry and Physics, 18(4), 2821
Wang, Welton, E. J., Holben, B. N., Tsay, S.-C., Lin, N.-H., Giles, D., . . . Lin, T.-H. (2015). Vertical Distribution and Columnar Optical Properties of Springtime Biomass-Burning Aerosols over Northern Indochina during 2014 7-SEAS Campaign. Aerosol and Air Quality Research, 15(5), 2037-2050. doi: 10.4209/aaqr.2015.05.0310
Wilcox, E. M., Thomas, R. M., Praveen, P. S., Pistone, K., Bender, F. A.-M., & Ramanathan, V. (2016). Black carbon solar absorption suppresses turbulence in the atmospheric boundary layer. Proceedings of the National Academy of Sciences, 113(42), 11794-11799
Witte, B., Singler, R., & Bailey, S. (2017). Development of an Unmanned Aerial Vehicle for the Measurement of Turbulence in the Atmospheric Boundary Layer. Atmosphere, 8(12). doi: 10.3390/atmos8100195
Yu, H., Liu, S., & Dickinson, R. (2002). Radiative effects of aerosols on the evolution of the atmospheric boundary layer. Journal of Geophysical Research: Atmospheres, 107(D12), AAC 3-1-AAC 3-14
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top