跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/07 01:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:時嘉志
研究生(外文):Chia-Chih Shih
論文名稱:以摻雜氨基磺酸之PEDOT:PSS電洞傳遞層製備高效率反式錫鈣鈦礦太陽能電池
論文名稱(外文):Improving the Performance of Inverted Tin Perovskite Solar Cells with Sulfamic acid-doped PEDOT:PSS HTLs
指導教授:吳春桂吳春桂引用關係
指導教授(外文):Chun-Guey Wu
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:165
中文關鍵詞:錫鈣鈦礦太陽能電池
相關次數:
  • 被引用被引用:0
  • 點閱點閱:130
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
錫鈣鈦礦(TPsk)太陽能電池是將鉛鈣鈦礦太陽能電池吸光層的中心金屬以錫取代,TPsk有較鉛鈣鈦礦更接近Shockley–Queisser limit (S–Q limit)中最佳光電轉換效率所需具備的吸光層能隙(1.3-1.4 eV)且在環境中形成毒性較低的SnO2,具未來性。大多數錫鈣鈦礦太陽能電池(TPSC)的研究都著重在減少TPsk膜中Sn4+的量或調整吸光層能階來匹配電洞傳遞層(HTL)的能階進而提高TPSC的光電轉換效率及穩定性,本研究是以調整HTL能階的方式來提高HTL與吸光層之能階的匹配並同時改善沉積在HTL上之錫鈣鈦礦膜的品質來增加元件的效率。實驗將Sulfamic acid (SA)添加到PEDOT:PSS(aq) (PS)調整HTL的導電度及能階並沉積在PS膜上製備PS/SA@PS雙層HTL,以PS/SA@PS雙層膜作為HTL所組裝之元件的光電轉換效率可達10.49%且放置在手套箱中2016小時後光電轉換效率可維持原來的95%,比用PS單層膜作為HTL之元件的光電轉換效率(8.17%)高28%,PS單層膜作為HTL之元件的穩定性在相同測試條件下光電轉換效率也僅維持原來的63%。摻雜SA之PS膜的導電度約為PS膜的1.5倍、光穿透度在波長範圍380-700 nm比PS膜高且其work function(WF, -5.38 V)與TPsk膜之Valence band (-5.40)匹配性高。此外,沉積在含SA之HTL的TPsk膜中Sn2+/Sn4+比例(72/28)比沉積在PS膜上之TPsk膜的Sn2+/Sn4+比例(60/40)高,因SA中磺酸基團氧上的孤對電子會與SnI2及SnF2中之Sn2+產生交互作用製備出高品質的TPsk膜,使Sn2+不易氧化成Sn4+且減少SnF2在TPsk膜表面形成聚集,沉積在摻雜SA之PS膜上的錫鈣鈦礦膜比沉積在PS單層膜上的錫鈣鈦礦膜平坦且緻密且結晶度高。
Tin perovskite (TPsk) is a material used tin to replace lead in lead perovskite sola cell (PSC). TPsk with a band gap close to the ideal energy gap (~1.34 eV) in Shockley–Queisser limit (S–Q limit) and low toxic catches a great attention in solar cell community. Most research on tin perovskite solar cells (TPSC) focuses on reducing the amount of Sn4+ in the TPsk film or adjusting the energy level of the light-absorbing layer to match the energy level of the hole transporting layer (HTL) to improve the power conversion efficiency (PCE) and stability of TPSC In this study, the energy level of the PEDOT:PSS based HTL is adjusted to improve match of the energy level of light-absorbing layer, and improve the quality of the tin perovskite film deposited on the HTL to enhance the photovoltacic performance of the device. Sulfamic acid (SA) was added to PEDOT:PSS(aq) (PS) HTL to adjust the conductivity and energy level of SA@PS HTL. A layer of PS film was insert in-between ITO and SA@PS to prepare PS/SA@PS double-layer HTL. The PCE of the device based on PS/SA@PS HTL achieved the highest PCE of 10.49% and the PCE maintains 95% of the initial value when the cells was placed in the glove box for 2016 hours. On the other hand, the PCE of the device based on PS HTL (8.17 %) is 28% lower and its stability under the same test conditions maintains only 63% of the initial PCE. The conductivity of the PS film doped with SA is about 1.5 of that for the PS film and the light transmittance is slightly higher than the PS film in the wavelength range of 380-700 nm. The work function (WF, -5.38 V) of SA@PS has good match with the valence band (-5.40) of the TPsk film. In addition, the Sn2+/Sn4+ ratio (72/28) of the TPsk film deposited on SA@PS HTL is higher than that (60/40) of the TPsk film deposited on PS film, because of the lone pair of the oxygen in the sulfonic acid group will interact with Sn2+ in SnI2 and SnF2 to passivate TPsk film, making Sn2+ difficult to oxidize to Sn4+ and at the same time reducing the aggregation of SnF2 in the TPsk film. The tin perovskite film deposited on the PS/SA@PS film is flatter, denser and more crystalline than that deposited on PS HTL.
摘要 vii
Abstract ix
Graphical Abstract xi
目錄 xii
圖目錄 xix
表目錄 xxvi
附錄 xxxi
第一章、緒論 1
1-1、 前言 1
1-2、 錫鈣鈦礦太陽能電池(Perovskite solar cell, PSC) 4
1-2-1. 錫鈣鈦礦太陽能電池的架構 4
1-2-2. 反式錫鈣鈦礦太陽能電池的工作原理 6
1-2-3. 錫鈣鈦礦太陽能電池的光電轉換效率 7
1-3、 錫鈣鈦礦太陽能電池的研究歷程 9
1-3-1. 第一個錫鈣鈦礦太陽能電池的研究 10
1-3-2. 第一個以全無機錫鈣鈦礦材料作為吸光層的錫鈣鈦礦太陽能電池研究 12
1-3-3. 當今文獻中最高光電轉換效率的錫鈣鈦礦太陽能電池元件 13
1-4、 製備錫鈣鈦礦膜的方法 15
1-4-1. 一步驟合成法製備錫鈣鈦礦膜 15
1-4-2. 一步驟反溶劑法製備錫鈣鈦礦膜 16
1-4-3. 兩步驟合成法製備錫鈣鈦礦膜 17
1-5、 增加錫鈣鈦礦太陽能電池開路電壓的方法 18
1-5-1. 調整錫鈣鈦礦吸光材料陽離子的比例 18
1-5-2. 調整錫鈣鈦礦吸光材料陰陽離子的比例 20
1-5-3. EDAI2與GAI應用於錫鈣鈦礦太陽能電池 22
1-5-4. 經乙二胺後處理能提高錫鈣鈦礦膜的VB 24
1-6、 Sn4+對錫鈣鈦礦太陽能電池的影響與改善方法 25
1-6-1. 以SnF2作為添加劑填補錫鈣鈦礦膜中的Sn4+缺陷 26
1-6-2. 以錫粉還原FASnI3前驅溶液中的Sn4+離子 28
1-6-3. 磺酸基團上的孤對電子能與Sn2+鍵結形成抗氧化膜 29
1-6-4. 錫鈣鈦礦前驅溶液在酸性環境下能抑制Sn2+氧化成Sn4+ 31
1-7、 以PEDOT:PSS膜作為TPSC之HTL的優缺點及改質方法 33
1-7-1. PEG和PSS-形成氫鍵提高PEDOT:PSS膜的WF 34
1-7-2. NH4+能和PSS-形成PSS- NH4+降低PEDOT:PSS膜的WF 35
1-7-3. 以HQ修飾吸光層與PEDOT:PSS膜的界面 37
1-7-4. 在PEDOT:PSS(aq)添加glycerol增加PEDOT:PSS膜的導電度及光穿透度以應用在錫鈣鈦礦太陽能電池 39
1-7-5. 經兩性離子化合物後處理能提高PEDOT:PSS膜的導電度 42
1-8、 研究動機 44
第二章、實驗方法 45
2-1、 實驗藥品與儀器 45
2-1-1. 藥品 45
2-1-1. 儀器設備 46
2-2、 反式錫鈣鈦礦太陽能電池組裝步驟 47
2-2-1. 藥品配製 47
2-2-2. 反式錫鈣鈦礦太陽能電池元件的組裝 49
2-3、 儀器原理及樣品製備 53
2-3-1. 太陽光模擬器(Solar Simulator, Enlitech SS-F5) 53
2-3-2. 太陽能電池外部量子效率量測系統(Incident Photon to Current Conversion Efficiency (IPCE), QE-S3011) 55
2-3-3. 場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscope, Nova nano SEM 230) 56
2-3-4. 傅立葉轉換紅外光光譜儀(Fourier transform infrared spectrometer, Jasco 4100) 57
2-3-5. X-ray繞射光譜儀(X-Ray Diffractometer, BRUKER D8 Discover ) 58
2-3-6. 紫外光/可見光/近紅外光吸收光譜儀(Ultraviolet–visible-NIR spectroscopy, HITACHI U-4100 ) 59
2-3-7. 光致螢光光譜儀(Photoluminescence Spectrometer, Uni think UniRAM) 60
2-3-8. XPS光電子能譜儀(X-ray photoelectron spectroscopy, Thermo VG-Scientific / Sigma Probe) 61
2-3-9. UPS紫外光電子能譜儀 (Ultraviolet photoelectron spectroscopy, Thermo VG-Scientific / Sigma Probe) 61
2-3-10. 接觸角量測儀(Contact angle, Grandhand Ctag01) 62
第三章、結果與討論 63
3-1、 篩選錫鈣鈦礦前驅溶液最佳製備條件 63
3-1-1. 以不同旋轉塗佈方式製備錫鈣鈦礦膜並組裝成元件的光伏表現 63
3-1-2. 篩選不同濃度FA0.98EDA0.01SnI3前驅溶液製備成膜並組裝成元件的光伏表現 65
3-1-3. 添加不同濃度SnF2至錫鈣鈦礦前驅溶液製備成膜並組裝成元件的光伏表現 69
3-1-4. FA0.98EDA0.01SnI3前驅溶液以不同加熱方式製備成膜並組裝成元件的光伏表現 70
3-2、 篩選適合改善PEDOT:PSS膜品質的磺酸化合物 71
3-2-1. 添加不同磺酸化合物至PEDOT:PSS(aq)製備成膜作為電洞傳遞層並組裝成元件的光伏表現 72
3-2-2. 添加不同重量之SA至PEDOT:PSS(aq)製備成電洞傳遞層並組裝成元件的光伏表現 74
3-2-3. 將SA以不同方法沉積在PEDOT:PSS膜上作為電洞傳遞層並組裝成元件的光伏表現 76
3-2-4. 不同濃度SA(aq)沉積在PEDOT:PSS膜上作為電洞傳遞層並組裝成元件的光伏表現 78
3-2-5. 含不同SA濃度之SA@PS(aq)沉積在PEDOT:PSS膜上作為電洞傳遞層並組裝成元件的光伏表現 80
3-2-6. 以不同轉速製備SA@PS膜並沉積在PS膜上作為電洞傳遞層並組裝成元件的光伏表現 81
3-3、 分別以PEDOT:PSS、SA@PS、PS/SA及PS/SA@PS膜作為HTL所組裝之最高效率元件的IPCE 83
3-4、 分別以PEDOT:PSS、SA@PS、PS/SA及PS/SA@PS膜作為電洞傳遞層之最高效率元件的遲滯現象 84
3-5、 分別以PEDOT:PSS、SA@PS、PS/SA及PS/SA@PS膜作為HTL所組裝之最高效率元件的暗電流 86
3-6、 四種電洞傳遞層的光學性質及物理性質 88
3-6-1. 添加SA於PEDOT:PSS膜對其與錫鈣鈦礦前驅溶液之相容性的影響 88
3-6-2. SA的添加對PEDOT:PSS膜導電度的影響 89
3-6-3. PEDOT:PSS、SA@PS、PS/SA及PS/SA@PS膜的UV-Vis穿透光譜圖及對AM1.5G太陽能譜的光通量 91
3-6-4. PEDOT:PSS、SA@PS、PS/SA及PS/SA@PS膜的XRD繞射圖 94
3-6-5. PEDOT:PSS、SA@PS、PS/SA與PS/SA@PS膜與沉積在其上之錫鈣鈦礦膜的電洞遷移率 96
3-6-6. PEDOT:PSS、SA@PS、PS/SA及PS/SA@PS膜的前置軌域能階 100
3-7、 沉積在不同電洞傳遞層之錫鈣鈦礦膜的光學性質、表面形貌及其他物理性質 102
3-7-1. 沉積在PEDOT:PSS、SA@PS、PS/SA及PS/SA@PS膜上之錫鈣鈦礦膜的UV-Vis吸收光譜圖 102
3-7-2. 沉積在不同電洞傳遞層之錫鈣鈦礦膜的前置軌域能階 103
3-7-3. 沉積在不同電洞傳遞層之錫鈣鈦礦膜的表面形貌 106
3-7-4. SA、SA@SnI2及SA@SnF2的FTIR穿透光譜圖 109
3-7-5. 沉積在不同電洞傳遞層之錫鈣鈦礦膜的XPS縱深分析 110
3-7-6. 沉積在不同電洞傳遞層之錫鈣鈦礦膜的XPS圖 111
3-7-7. 沉積在不同電洞傳遞層之錫鈣鈦礦膜的結晶度 113
3-7-8. 沉積在不同電洞傳遞層之錫鈣鈦礦膜的PL及TRPL圖 115
3-8、 PEDOT:PSS、SA@PS、PS/SA及PS/SA@PS膜作為HTL所組裝之鈣鈦礦太陽能電池元件之長時間穩定性 117
3-9、 不同HTL之元件的玻璃面沉積NaF膜作為抗反射層的光伏表現 119
第四章、結論 121
參考文獻 123
附錄 130
附錄1.以不同電洞傳遞層所組裝之最高效率元件的穩態電流密度及光電轉換效率輸出 130
附錄2.以PS/SA@PS膜作為電洞傳遞層及6-Br@TPsk作為吸光層並組裝成元件的光伏表現 131
附錄3.不同電洞傳遞層所組裝之元件放置在手套箱各光伏參數隨時間的變化 132
附錄4.SA與PEDOT:PSS交互作用各原子間距的模擬計算結果 134
[1] https://udn.com/news/story/6849/50120410, November, 2020.
[2] http://en.wikipedia.org/wiki/Gustav_Rose, August, 2020.
[3] Jaeki Jeong, Minjin Kim, Jongdeuk Seo, Haizhou Lu, Paramvir Ahlawat, Aditya Mishra, Yingguo Yang, Michael A. Hope, Felix T. Eickemeyer, Maengsuk Kim, Yung Jin Yoon, In Woo Choi, Barbara Primera Darwich, Seung Ju Choi, Yimhyun Jo, Jun Hee Lee, Bright Walker, Shaik M. Zakeeruddin, Lyndon Emsley, Ursula Rothlisberger, Anders Hagfeldt, Dong Suk Kim, Michael Grätzel & Jin Young Kim, “Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells” Nature 2021, 592, 381-385.
[4] H. Kim, Y. H. Lee, T. Lyu, J. H. Yoo, T. Park and J. H. Oh, “Boosting the performance and stability of quasi-twodimensional tin-based perovskite solar cells using the formamidinium thiocyanate additive” J. Mater. Chem. A 2018, 6, 18173-18182.
[5] Kohei Nishimura, Muhammad Akmal Kamarudin, Daisuke Hirotani, Kengo Hamada, Qing Shen, Satoshi Iikubo, Takashi Minemoto, Kenji Yoshino and Shuzi Hayase, “Lead-free tin-halide perovskite solar cells with 13% efficiency” Nano Energy 2020,74,104858-104864.
[6] Chien-Hung Chiang and Chun-Guey Wu, “A methodto prepare highly oriented MAPbI3 crystallites for high efficiency perovskite solar cell to achieve 86% fill factor”, ACS Nano 2018, 12, 10355-10368.
[7] https://www.nrel.gov/grid/solar-resource/spectra-am1.5.html 2021年7月
[8] Cuili Gai, Jigang Wang, Yongsheng Wang and Junming Li, “The Low-Dimensional Three-Dimensional Tin Halide Perovskite: Film Characterization and Device Performance”, Energies. 2020, 13(1), 2
[9] Feng Hao, Constantinos C. Stoumpos, Duyen Hanh Cao, Robert P. H. Chang and Mercouri G. Kanatzidis, “Lead-free solid-state organic–inorganic halide perovskite solar cells.” Nature Photon. 2014, 8, 489-494.
[10] Mulmudi Hemant Kumar, Sabba Dharani, Wei Lin Leong, Pablo P. Boix, Rajiv Ramanujam Prabhakar, Tom Baikie, Chen Shi, Hong Ding, Ramamoorthy Ramesh, Mark Asta, Michael Graetzel, Subodh G. Mhaisalkar and Nripan Mathews, “Lead-Free Halide Perovskite Solar Cells with High Photocurrents Realized Through Vacancy Modulation.” Adv. Mater. 2014, 26, 7122-7127.
[11] Seon Joo Lee, Seong Sik Shin, Young Chan Kim, Dasom Kim, Tae Kyu Ahn, Jun Hong Noh, Jangwon Seo and Sang Il Seok, “Fabrication of Efficient Formamidinium Tin Iodide Perovskite Solar Cells through SnF2-Pyrazine Complex” J. Am. Chem. Soc. 2016, 138, 12, 3974-3977.
[12] Zonglong Zhu, Chu-Chen Chueh, Nan Li, Chengyi Mao, and Alex K.-Y. Jen, “Realizing Efficient Lead-Free Formamidinium Tin Triiodide Perovskite Solar Cells via a Sequential Deposition Route” Adv. Mater. 2017, 1703800.
[13] Ziran Zhao, Feidan Gu, Yunlong Li, Weihai Sun, Senyun Ye, Haixia Rao, Zhiwei Liu, Zuqiang Bian, and Chunhui Huang, “Mixed-Organic-Cation Tin Iodide for Lead-Free Perovskite Solar Cells with an Efficiency of 8.12%”, Adv. Sci. 2017, 4, 1700204.
[14] Bin-Bin Yu, Min Liao, Yudong Zhu, Xusheng Zhang, Zheng Du, Zhixin Jin, Di Liu, Yiyu Wang, Teresa Gatti, Oleg Ageev, and Zhubing He, “Oriented Crystallization of Mixed-Cation Tin Halides for Highly Efficient and Stable Lead-Free Perovskite Solar Cells”, Adv. Funct. Mater. 2020, 30, 2002230.
[15] Efat Jokar, Cheng-Hsun Chien, Cheng-Min Tsai, Amir Fathi and Eric Wei-Guang Diau, “Robust Tin-Based Perovskite Solar Cells with Hybrid Organic Cations to Attain Efficiency Approaching 10%”, Adv. Mater. 2018, 31, 4835-4841.
[16] M.A. Kamarudin, D. Hirotani, Z. Wang, K. Hamada, K. Nishimura, Q. Shen, T. Toyoda, S. Iikubo, T. Minemoto, K. Yoshino, S. Hayase, “Suppression of Charge Carrier Recombination in Lead-Free Tin Halide Perovskite via Lewis Base Post-treatment”, J. Phys. Chem. Lett. 2019, 10, 5277-5283.
[17] Weiqiang Liao, Dewei Zhao, Yue Yu, Corey R. Grice, Changlei Wang, Alexander J. Cimaroli, Philip Schulz, Weiwei Meng, Kai Zhu, Ren-Gen Xiong and Yanfa Yan, “Lead-Free Inverted Planar Formamidinium Tin Triiodide Perovskite Solar Cells Achieving Power Conversion Efficiencies up to 6.22%”, Adv. Mater. 2016, 28, 9333-9340.
[18] Feidan Gu, Senyun Ye, Ziran Zhao, Haixia Rao, Zhiwei Liu, Zuqiang Bian and Chunhui Huang, “Improving Performance of Lead-Free Formamidinium Tin Triiodide Perovskite Solar Cells by Tin Source Purification” Sol. RRL 2018, 2, 1800136-1800145.
[19] Qidong Tai, Xuyun Guo, Guanqi Tang, Peng You, Tsz-Wai Ng, Dong Shen, Jiupeng Cao, Chun-Ki Liu, Naixiang Wang, Ye Zhu, Chun-Sing Lee and Feng Yan, “Antioxidant grain passivation for air stable tin-based perovskite solar cells”, Angew. Chem. 2019, 58, 806-810.
[20] Xiangyue Meng, Tianhao Wu, Xiao Liu, Xin He, Takeshi Noda, Yanbo Wang, Hiroshi Segawa, and Liyuan Han, “Highly Reproducible and Efficient FASnI3 Perovskite Solar Cells Fabricated with Volatilizable Reducing Solvent”, J. Phys. Chem. Lett 2020, 11, 2965-2971.
[21] Xiao Liu, Yanbo Wang, Fengxian Xie, Xudong Yang, and Liyuan Han, “Improving the Performance of Inverted Formamidinium Tin Iodide Perovskite Solar Cells by Reducing the Energy-Level Mismatch”, ACS Energy Lett. 2018, 3, 1116-1121
[22] Wang, Y.; Hu, Y.; Han, D.; Yuan, Q.; Cao, T.; Chen, N.; Zhou, D.; Cong, H.; Feng, L., “Ammonia-treated graphene oxide and PEDOT:PSS as hole transport layer for high-performance perovskite solar cells with enhanced stability”, Org. Electron. 2019, 70, 63-70.
[23] Meiying Zhang, Dan Chi, Junfeng Wang, Fengmin Wu, Shihua Huang, “Improved performance of lead-tin mixed perovskite solar cells with PEDOT:PSS treated by hydroquinone”, Solar Energy 2020, 201, 589-595.
[24] Jian-Feng Li, Chuang Zhao, Heng Zhang, Jun-Feng Tong, Peng Zhang, Chun-Yan Yang, Yang-Jun Xia, and Duo-Wang Fan, “Improving the performance of perovskite solar cells with glycerol-doped PEDOT:PSS buffer layer”, Chin. Phys. B 2016, 25, NO. 028402.
[25] Yijie Xia, Hongmei Zhang and Jianyong Ouyang, “Highly conductive PEDOT:PSS films prepared through a treatment with zwitterions and their application in polymer photovoltaic cells”, J. Mater. Chem. 2010, 20, 9740-9747
[26] Chen, K.; Wu, P.; Yang, W.; Su, R.; Luo, D.; Yang, X.; Tu, Y.; Zhu, R.; Gong, Q., “Low-dimensional perovskite interlayer for highly efficient lead-free formamidinium tin iodide perovskite solar cells”, Nano Energy 2018, 49, 411-418.
[27] Yingchu Chen, Jie Shi, Xitao Li, Siqi Li, Xinding Lv, Xiangnan Sun, Yan-Zhen Zheng, and Xia Tao, “A universal strategy combining interface and grain boundary engineering for negligible hysteresis and high efficiency (21.41%) planar perovskite solar cells”, J. Mater. Chem. A 2020, 8, 6349-6359.
[28] Xizu Wang, Aung Ko Ko Kyaw, Cailiu Yin, Fei Wang, Qiang Zhu, Tao Tang, Phang In Yee and Jianwei Xu, “Enhancement of thermoelectric performance of PEDOT:PSS films by post-treatment with a superacid”, RSC Adv. 2018, 8, 18334-18340.
[29] Faris Yılmaz, (2016) “Conducting Polymers”, London: IntechOpen. Chapter 5.
[30] Haimang Yi, Dian Wang, Leiping Duan, Faiazul Haque, Cheng Xu, Yu Zhang, Gavin Conibeer, Ashraf Uddin, “Solution-processed WO3 and water-free PEDOT:PSS composite for hole transport layer in conventional perovskite solar cell”, Electrochimica Acta. 2019, 319, 349-358.
[31] Cong Liu, Jin Tu, Xiaotian Hu, Zengqi Huang, Xiangchuan Meng, Jia Yang, Xiaopeng Duan, Licheng Tan, Zhen Li, and Yiwang Chen “Enhanced Hole Transportation for Inverted Tin-Based Perovskite Solar Cells with High Performance and Stability”, Adv. Funct. Mater. 2019, 29, 1808059.
[32] D. Yang, R.X. Yang, X.D. Ren, X.J. Zhu, Z. Yang, C. Li, S.Z. Liu, Hysteresis-Suppressed High-Efficiency Flexible Perovskite Solar Cells Using Solid-State Ionic-Liquids for Effective Electron Transport, Adv. Mater. 2016, 28, 5206-5213.
[33] Ziji Liu1, Hualin Zheng, Detao Liu, Zhiqing Liang, Wenyao Yang, Hao Chen, Long Ji, Shihao Yuan, Yiding Gu, and Shibin Li, “Controllable Two-dimensional Perovskite Crystallization via Water Additive for Highperformance Solar Cells”, Nanoscale Research Letters 2020, 15, 1-8.
[34] Patrycja Makuła, Michał Pacia, and Wojciech Macyk, “How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV−Vis Spectra”, J. Phys. Chem. Lett. 2018, 9, 6814-6817.
[35] Meiyue Liu, Ziming Chen, Zhen Chen, Hin-lap Yip, and Yong Cao, “Cascade-Type Electron Extraction Design for Efficient Low-Bandgap Perovskite Solar Cells Based on Conventional Structure with Suppressed Open-Circuit Voltage Loss”, Mater. Chem. Front. 2019, 3, 496-504.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊