跳到主要內容

臺灣博碩士論文加值系統

(100.26.176.111) 您好!臺灣時間:2024/07/16 14:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:安札瑪
研究生(外文):Anif Jamaluddin
論文名稱:石墨烯功能性改質於鋰離子電池負極材料 之研究
論文名稱(外文):Graphene-Modified Electrode for Advanced Anode Materials in Lithium-Ion Batteries
指導教授:蘇清源
指導教授(外文):Ching-Yuan, Su
學位類別:博士
校院名稱:國立中央大學
系所名稱:能源工程研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:英文
論文頁數:145
中文關鍵詞:電化學剝離石墨烯噴霧乾燥法微球型結構高容量的陽極矽陽極鋰離子電池功能化石墨烯人造的SEI膜鋰金屬電池無陽極鋰金屬電池
外文關鍵詞:Electrochemically exfoliated grapheneSpray dryMicrospherical structureHigh-capacity anodeSi anodeLithium-ion batteriesFunctionalized grapheneArtificial solid electrolyte interphaseLithium-metal batteries (LMBs)Anode free lithium batteries (AFLBs)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:197
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在儲能領域當中,電極材料提供離子傳輸與儲存,對於提升電化學效能至關重要。而在鋰離子電池(LIBs)技術中,由於矽和鋰金屬都具有高理論電容(>3000 mAh g-1),因此使他們成為下一代陽極LIBs的候選。然而,Si陽極卻具有一些關鍵的問題,例如在鋰化/脫鋰過程中體積的急遽變化、不穩定的固態電解質界面(SEI)和低的導電性等限制。由於石墨烯具有的高比表面積、高電導率和良好的機械性能等多種性能,因此使用石墨烯作為電極材料進行多功能性的表面改質,是一個理想的策略。
在本文中,提出了兩種使用電化學剝離石墨烯(ECG)修飾矽表面作為陽極材料的策略。首先,通過噴霧乾燥法將ECG包覆的Si奈米顆粒(Si NPs)呈現出獨特的核殼結構,且具有微米級的球形和空隙空間、可預留體積膨脹空間並提升矽的導電性。結果顯示,少層的ECG包裹的矽球(Si@FL-GB) 陽極顯示出2882.3 mAh g-1的高初始放電電容值、在0.2 A g-1時的初始庫倫效率(ICE)為86.9%以及在高電流密度(3 A g-1)下達到1360.9 mAh g-1的高性能。 其次,我們通過引入氨氣(NH3)作為氮的前驅物將Si@ECGB的表面層,將其改質成Si3N4和氮摻雜的石墨烯,以做後續研究。此方法可用於增加電導率、離子遷移率並保護鋰離子電池陽極,在本文中表明,由於有效的鋰化/脫鋰,可以使Si@N-ECGB在300次循環中維持優異的電化學性能(在5 A g-1時為1171.9 mAh g-1)和穩定性(在3 A g-1高達998.1 mAhg-1),並且在全電池中(Si@ECGB‖NMC 811 (Ni:Mn:Co=8:1:1)),該電池具有很高的初始電容量(170 mAh g-1)和實現在100個循環後約84%的維持率。這項工作為實現LiB的高電容量和穩定性提供了潛在的策略。
此外,對於阻礙鋰金屬電池 lithium metal batteries (LMBs)應用的關鍵問題,包括枝晶生長和重複循環過程中的低庫倫效率,因此我們利用水熱法對ECG表面進行氟化改質,然後藉由電泳沉積(EPD),在沒有任何黏著劑的情況下塗佈到銅箔中(對電極),這些提議被用於LMBs中的人造固態電解質界面(ASEI),透過FECG增強的ASEI表現出平滑的Li鍍層以及無枝晶鋰剝落的現象。在結果中表明,使用1 wt% LiNO3混合進1 M LiFSi 之電解液所組裝的半電池展示了高穩定性,在1mAh cm-2 的100個循環中達到了99%的平均庫倫效應 average coulombic efficiency (ACE)。並且極化曲線也顯示了長達250小時的優異性能,同等也說明了新穎的石墨烯氟化方式所構成的ASEI可以成功地在無陽極鋰離子電池anode free lithium batteries(AFLBs)中被使用。
The surface area of electrode materials in energy storage is critical to enhancing the electrochemical performance through a facile path of ion transportation in the active materials. Furthermore, the improvement by surface modification of electrode materials is proposed by using graphene because of its extraordinarily high surface area, high electric conductivity, and good mechanical properties.
In lithium-ion batteries (LIBs) technology, both Si and lithium metal are candidates for next-generation of anode LIBs due to the high theoretical capacity (> 3000 mAh g-1 ). However, Si anode has critical issues, including the impressive volume change through the lithiation/ delithiation process, unstable solid electrolyte interphase (SEI), and loss off electrical contact. Herein, two strategies were promoted to modify the Si surface as anode materials using electrochemically exfoliated graphene (ECG). First, ECG encapsulated Si nanoparticle (Si NPs) with a spray dry method that exhibited an unique structure with a micro-size ball-like and a void space, which preserves the volume expansion and increases silicon's electrical conductivity. As a result, the Si@few-layer ECG ball (Si@FL-GB) anode demonstrates a high initial discharge capacity up to 2882.3 mAh g-1 with 86.9% of the initial coulombic efficiency (ICE) at 0.2 A g-1, and high performance at 1360.9 mAh g-1 at high current density (3 A g-1). Second, the surface of Si@ECGB is modified by introducing NH3 gas (Nitrogen resources) that changed a surface layer to Si3N4 and N-doped graphene. This method helps increase the ionic mobility, electrical conductivity and maintain stability in anode LIBs. The electrochemical performance shows that Si@N-ECGB exhibits excellent performance up to 171.9 mAh g-1 (5 A g-1) and high stability of 998.1 mAh g-1 (3 A g-1) until 300 cycles, due to the efficient lithiation/delithiation that maintains the strength of the Si@N-ECGB. In the practical application, Si@N-ECGB||NMC 811 (Ni:Mn:Co=8:1:1) is assembled into full-cell batteries that achieved 170 mAh g-1 initial capacity with high capacity retention up to ~ 84% after 100 cycles. Therefore, these provide a potential strategy for contributing to achieve the high stability anode LIBs.
Also, lithium metal batteries (LMBs) have a critical problem hindering the application, including dendrite growth and low coulombic efficiency during repeated cycles. We modified the surface of ECG by fluorination process with the solvothermal method, then coated into Cu (counter electrode) without any binder by electrophoretic deposition (EPD). These proposed artificial solid electrolyte interphase (ASEI) in LMBs. The ASEI reinforced with F-ECG exhibit smooth Li plating/stripping with no sign dendrites. As a result, F-ECG half-cell in 1 M LiFSi with 1 wt% LiNO3 electrolyte possesses high stability for 100 cycles with average coulombic efficiency (ACE) up to 99 % in 1 mA cm-2 for 1 mAh cm-2. The polarization profile also showed remarkable performance for up to 250 hours. Finally, graphene's novel fluorination successfully designed ASEI by forming LiF for anode free lithium batteries (AFLBs).
摘要 i
Abstract ii
Acknowledgment iv
Table of Contents v
List of Figures ix
List of Tables xiii
Symbols xiv

Chapter 1
Introduction
1.1 Energy Storage 1
1.1.1 Research Challenges in Lithium-Ion Batteries 2
1.1.2 Anode Lithium-Ion Batteries 3
1.2 Graphene Surface Modification 4
1.2.1 Holey/Porous Graphene 4
1.2.2 Heteroatom Functionalized Graphene 5
1.3 Research Motivation 6
1.4 Thesis Outline 6
1.5 References 7



Chapter 2
Literature Reviews
2.1 Research Opportunities in Silicon Anode 12
2.1.1 Structural Modification of Silicon for Anode LIBs 15
2.1.2 Graphene Modified Surface Silicon 16
2.2 Lithium Metal Batteries (LMBs) 19
2.2.1 Current Issue of LMBs and Anode Free Li Batteries (AFLBs) 20
2.2.2 Research Prospects at LMBs 23
2.2.3 Surface Modification of Graphene for LMBs 23
2.3 References 27

Chapter 3
Surface Modification of Si by Wrapping Graphene Toward High-Performance Anode of Lithium-Ion Batteries
3.1 Introduction 34
3.2 Experimental Section 36
3.2.1 Material Preparation 36
3.2.2 Graphene Synthesis 36
3.2.3 Graphene Wrapped Silicon (Si@Gra) 36
3.2.4 Half-cell Anode LIBs 37
3.2.5 Material Characterization and Electrochemical Test 38
3.3 Result and Discussion 38
3.3.1 Surface and Morphological Characterizations 38
3.3.2 Electrochemical Performance 46
3.4 Conclusions 56
3.5 References 56
Chapter 4
Surface Modification by Controlling Heteroatoms in a Si@graphene Multi-Core-Shell Anode for Lithium-Ion Full Cells
4.1 Introduction 62
4.2 Method 64
4.2.1 Materials Preparation and Synthesized 64
4.2.2 Self-assembly Si@ECG Multi-core-shell 64
4.2.3 Batteries Assembly 65
4.2.4 Materials and Electrochemical Properties 66
4.3 Result and Discussion 67
4.3.1. Materials Characterization 67
4.3.2. Electrochemical Performance 74
4.4 Conclusions 84
4.5 References 84

Chapter 5
Surface Modification by Fluorinated Graphene as Artificial Solid Electrolyte Interphase for Anode Free Lithium Metal Batteries
5.1 Introduction 90
5.2 Experimental Section 92
5.2.1 Material Preparation 92
5.2.2 Battery Assembly 93
5.2.3 Material Properties 94
5.2.4 Electrochemical Properties 94
5.3 Result and Discussion 94
5.3.1 Mechanism of Fluorination Graphene and Electrophoretic Deposition Process . 94
5.3.2 Materials Characterization 97
5.3.3 Electrochemical Performance 98
5.3.5 SEI Analysis after Cycles 104
5.4 Conclusions 116
5.5 References 116

Chapter 6
Conclusions and Future Works
6.1 Conclusions 121
6.2 Future Works 121

Biography
McCloskey, B.D., Expanding the Ragone Plot: Pushing the Limits of Energy Storage. J Phys Chem Lett, 2015. 6(18): p. 3592-3.
2. Winter, M. and R.J. Brodd, What Are Batteries, Fuel Cells, and Supercapacitors? Chem. Rev., 2004. 104(10): p. 4245-4270.
3. Obreja, V.V.N., Supercapacitors specialities - Materials review. 2014. p. 98-120.
4. Ahmad, R., et al., Zeolitic imidazolate framework (ZIF)-derived porous carbon materials for supercapacitors: an overview. RSC Adv., 2020. 10(71): p. 43733-43750.
5. Luo, W., et al., Surface and Interface Engineering of Silicon-Based Anode Materials for Lithium-Ion Batteries. Adv. Energy Mater., 2017. 7(24): p. 1701083.
6. Feng, K., et al., Silicon-Based Anodes for Lithium-Ion Batteries: From Fundamentals to Practical Applications. Small, 2018. 14(8): p. 1702737.
7. Goriparti, S., et al., Review on recent progress of nanostructured anode materials for Li-ion batteries. J. Power Sources, 2014. 257: p. 421-443.
8. Wang, K.X., X.H. Li, and J.S. Chen, Surface and interface engineering of electrode materials for lithium-ion batteries. Adv. Mater., 2015. 27(3): p. 527-45.
9. Manthiram, A., An Outlook on Lithium Ion Battery Technology. ACS Cent Sci, 2017. 3(10): p. 1063-1069.
10. Fu, L.J., et al., Surface modifications of electrode materials for lithium ion batteries. Solid State Sci., 2006. 8(2): p. 113-128.
11. Zhang, X., X. Cheng, and Q. Zhang, Nanostructured energy materials for electrochemical energy conversion and storage: A review. J. Energy Chem., 2016. 25(6): p. 967-984.
12. Lin, D., Y. Liu, and Y. Cui, Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol., 2017. 12(3): p. 194-206.
13. Zuo, X., et al., Silicon based lithium-ion battery anodes: A chronicle perspective review. Nano Energy, 2017. 31: p. 113-143.
14. Ma, D., Z. Cao, and A. Hu, Si-Based Anode Materials for Li-Ion Batteries: A Mini Review. Nanomicro Lett, 2014. 6(4): p. 347-358.
15. Shen, X., et al., Beyond lithium ion batteries: Higher energy density battery systems based on lithium metal anodes. Energy Storage Mater., 2018. 12: p. 161-175.
16. Wu, F., et al., Perspectives for restraining harsh lithium dendrite growth: Towards robust lithium metal anodes. Energy Storage Mater., 2018. 15: p. 148-170.
17. Zhang, S.S., Problem, Status, and Possible Solutions for Lithium Metal Anode of Rechargeable Batteries. ACS Appl. Energy Mater., 2018. 1(3): p. 910-920.
18. Xu, W., et al., Lithium metal anodes for rechargeable batteries. Energy Environ. Sci., 2014. 7(2): p. 513-537.
19. Qian, J., et al., High rate and stable cycling of lithium metal anode. Nat Commun, 2015. 6: p. 6362.
20. Cen, Y., et al., Current Progress of Si/Graphene Nanocomposites for Lithium-Ion Batteries. C, 2018. 4(1): p. 14.
21. Raccichini, R., et al., The role of graphene for electrochemical energy storage. Nat Mater, 2015. 14(3): p. 9.
22. Abergel, D.S.L., et al., Properties of graphene: a theoretical perspective. Adv. Phys, 2010. 59(4): p. 261-482.
23. Jung, S.M., et al., Controlled porous structures of graphene aerogels and their effect on supercapacitor performance. Nanoscale, 2015. 7(10): p. 8.
24. Lang, J., et al., The roles of graphene in advanced Li-ion hybrid supercapacitors. J. Energy Chem., 2018. 27(1): p. 43-56.
25. Sari, N.P., et al., Controlled multimodal hierarchically porous electrode self-assembly of electrochemically exfoliated graphene for fully solid-state flexible supercapacitor. Phys. Chem. Chem. Phys., 2017. 19(45): p. 30381-30392.
26. Novoselov, K.S., et al., Electric Field Effect in Atomically Thin Carbon Films. SCIENCE, 2004. 306: p. 4.
27. Choi, W., et al., Synthesis of Graphene and Its Applications: A Review. Crit. Rev. Solid State Mater. Sci., 2010. 35(1): p. 52-71.
28. Chang, J.-H., et al., The hierarchical porosity of a three-dimensional graphene electrode for binder-free and high performance supercapacitors. RSC Adv., 2016. 6(10): p. 8384-8394.
29. Tao, H., et al., Porous Si/C/reduced graphene oxide microspheres by spray drying as anode for Li-ion batteries. J. Electroanal. Chem., 2017. 797: p. 16-22.
30. Liu, H., et al., One-step in situ preparation of liquid-exfoliated pristine graphene/Si composites: towards practical anodes for commercial lithium-ion batteries. New J. Chem., 2016. 40(8): p. 7053-7060.
31. Avouris, P. and C. Dimitrakopoulos, Graphene: synthesis and applications. Mater. Today, 2012. 15(3): p. 86-97.
32. Bonaccorso, F., et al., Production and processing of graphene and 2d crystals. Mater. Today, 2012. 15(12): p. 564-589.
33. Chung, D.D.L., A review of exfoliated graphite. J. Mater. Sci., 2015. 51(1): p. 554-568.
34. Ding, X., et al., Enhanced electrochemical performance promoted by monolayer graphene and void space in silicon composite anode materials. Nano Energy, 2016. 27: p. 647-657.
35. Liu, N., et al., One-Step Ionic-Liquid-Assisted Electrochemical Synthesis of Ionic-Liquid-Functionalized Graphene Sheets Directly from Graphite. Adv. Funct. Mater., 2008. 18(10): p. 1518-1525.
36. Ching-Yuan Su, et al., High-Quality Thin Graphene Films from Fast Electrochemical Exfoliation. ACS Nano, 2011. 5(3): p. 2332–2339.
37. Chuang, C.-H., et al., A green, simple and cost-effective approach to synthesize high quality graphene by electrochemical exfoliation via process optimization. RSC Adv., 2015. 5(67): p. 54762-54768.
38. Yu, P., et al., Electrochemical exfoliation of graphite and production of functional graphene. Curr. Opin. Colloid Interface Sci., 2015. 20(5-6): p. 329-338.
39. Jang, B.Z., et al., Graphene surface-enabled lithium ion-exchanging cells: next-generation high-power energy storage devices. Nano Lett., 2011. 11(9): p. 7.
40. Parviz, D., et al., Tailored Crumpling and Unfolding of Spray-Dried Pristine Graphene and Graphene Oxide Sheets. Small, 2015. 11(22): p. 2661– 2668.
41. Hooch Antink, W., et al., Recent Progress in Porous Graphene and Reduced Graphene Oxide-Based Nanomaterials for Electrochemical Energy Storage Devices. Adv. Mater. Interfaces, 2018. 5(5): p. 1701212.
42. Fan, Z., et al., Easy synthesis of porous graphene nanosheets and their use in supercapacitors. Carbon, 2012. 50(4): p. 1699-1703.
43. Zhou, D., et al., A general and scalable synthesis approach to porous graphene. Nat Commun, 2014. 5: p. 4716.
44. Sun, H., et al., Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science, 2017. 356(6338): p. 599-604.
45. Sherrell, P.C. and C. Mattevi, Mesoscale design of multifunctional 3D graphene networks. Mater. Today, 2016. 19(8): p. 428-436.
46. Yang, Z., et al., Preparation of 3D graphene-based architectures and their applications in supercapacitors. Prog. Nat. Sci.: Mater. Int, 2015. 25(6): p. 554-562.
47. Luo, J., H.D. Jang, and J. Huang, Effect of sheet morphology on the scalability of graphene-based ultracapacitors. ACS Nano, 2013. 7(2): p. 1464-71.
48. Han, S., et al., Porous graphene materials for advanced electrochemical energy storage and conversion devices. Adv. Mater., 2014. 26(6): p. 849-64.
49. Huang, X., et al., Functional nanoporous graphene foams with controlled pore sizes. Adv. Mater., 2012. 24(32): p. 4419-23.
50. Zhan, Y., et al., Iodine doped graphene as anode material for lithium ion battery. Carbon, 2015. 94: p. 1-8.
51. Wang, Z., et al., Oxocarbon-functionalized graphene as a lithium-ion battery cathode: a first-principles investigation. Phys. Chem. Chem. Phys., 2018. 20(11): p. 7447-7456.
52. Sui, Z.-Y., et al., A highly nitrogen-doped porous graphene – an anode material for lithium ion batteries. J Mater Chem A, 2015. 3(35): p. 18229-18237.
53. Quan, B., et al., Solvothermal-Derived S-Doped Graphene as an Anode Material for Sodium-Ion Batteries. Adv Sci (Weinh), 2018. 5(5): p. 1700880.
54. Gong, S. and Q. Wang, Boron-Doped Graphene as a Promising Anode Material for Potassium-Ion Batteries with a Large Capacity, High Rate Performance, and Good Cycling Stability. The Journal of Physical Chemistry C, 2017. 121(44): p. 24418-24424.
55. Du, Z., et al., Organic radical functionalized graphene as a superior anode material for lithium-ion batteries. J Mater Chem A, 2014. 2(24).
56. Li, Z., et al., A synergistic strategy for stable lithium metal anodes using 3D fluorine-doped graphene shuttle-implanted porous carbon networks. Nano Energy, 2018. 49: p. 179-185.
57. Cheng, H., et al., Dendrite-Free Fluorinated Graphene/Lithium Anodes Enabling in Situ LiF Formation for High-Performance Lithium-Oxygen Cells. ACS Appl. Mater. Interfaces, 2019. 11(43): p. 39737-39745.
58. Ma, C., X. Shao, and D. Cao, Nitrogen-doped graphene nanosheets as anode materials for lithium ion batteries: a first-principles study. J. Mater. Chem., 2012. 22(18): p. 5.
59. Wu, J.L., et al., N-Doped gel-structures for construction of long cycling Si anodes at high current densities for high performance lithium-ion batteries. J Mater Chem A, 2019. 7(18): p. 11347-11354.
60. Tang, X., G. Wen, and Y. Song, Stable silicon/3D porous N-doped graphene composite for lithium-ion battery anodes with self-assembly. Appl. Surf. Sci., 2018. 436: p. 398-404.
61. Zhang, R., et al., Lithiophilic Sites in Doped Graphene Guide Uniform Lithium Nucleation for Dendrite-Free Lithium Metal Anodes. Angew. Chem. Int. Ed. Engl., 2017. 56(27): p. 7764-7768.
62. Huang, G., et al., Lithiophilic 3D Nanoporous Nitrogen-Doped Graphene for Dendrite-Free and Ultrahigh-Rate Lithium-Metal Anodes. Adv. Mater., 2019. 31(2): p. 1805334.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊