跳到主要內容

臺灣博碩士論文加值系統

(44.213.63.130) 您好!臺灣時間:2023/01/29 11:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周冠程
研究生(外文):Guan-Cheng Zhou
論文名稱:連續與脈衝式近紅外光雷射對無鹼玻璃之改質與雙面微透鏡陣列加工
論文名稱(外文):Surface Modifications and Double-sided Microlens Array Fabrication on Alkali-free Glass Using CW and Pulsed NIR Lasers
指導教授:何正榮
指導教授(外文):Jeng-Rong Ho
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:英文
論文頁數:100
中文關鍵詞:雷射改質雙面微透鏡陣列
外文關鍵詞:Laser modificationDouble-sided microlens array
相關次數:
  • 被引用被引用:0
  • 點閱點閱:71
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要 v
Abstract vi
Content viii
List of Figures x
List of Tables xvi
Chapter 1 Introduction 1
1-1 Preface 1
1-2 Research background, purpose and methods 2
Chapter 2 Literature review 4
2-1 Laser glass modification 4
2-1-1 Carbon dioxide (CO2) laser glass modification 4
2-1-2 Carbon monoxide (CO) laser glass modification 8
2-1-3 Ultrashort pulse laser glass modification 10
2-2 Brief introduction and fabrication technologies of glass microlens array 12
2-2-1 Application of microlens array 12
2-2-2 Fabrication methods of glass microlens array 14
2-3 Laser-based method for MLAs fabrication 18
2-3-1 Laser direct writing methods 18
2-3-2 Hybrid methods 22
2-4 Motivation 24
Chapter 3 Experimental details 26
3-1 Experimental procedure 26
3-2 Experimental materials 26
3-3 Experimental details 27
3-3-1 Glass pre-cleaning 27
3-3-2 Experiment setup 27
3-3-3 Laser processing parameters 29
3-4 Charactering apparatus 29
Chapter 4 Results and Discussion 33
4-1 Mechanism of glass modification 33
4-1-1 Mechanism of formation of surface modification zone 33
4-1-2 NIR absorption of Glass 35
4-2 Topography of surface modification zone 38
4-2-1 Threshold of surface modification 38
4-2-2 Effect of laser power on surface morphology 39
4-2-3 Surface morphology of various laser irradiation time 45
4-2-4 Surface morphology of various repetition rates 53
4-2-5 Effects of defocusing on surface morphology 57
4-3 Forming process of surface modification zone 62
4-4 Analysis of strain distribution 64
4-5 Characteristics of surface modified zone 67
4-5-1 Uniformity of inner structure 67
4-5-2 Surface roughness 68
4-6 Fabrication of microlens array 71
4-6-1 Pitch limitation of MLA 71
4-6-2 Glass MLA as mold insert for replica molding 75
Chapter 5 Conclusion 78
Reference 80
[1] F. Z. Fang, X. D. Zhang, A. Weckenmann, G. X. Zhang, and C. Evans, "Manufacturing and measurement of freeform optics," CIRP Annals, vol. 62, no. 2, pp. 823-846, 2013/01/01/ 2013.
[2] D. Wu, C. An, M. H. Hong, W. Wang, Y. Peng, and Y. Lu, Grating fabrication with CW CO2 laser irradiation (Photonics Asia). SPIE, 2002.
[3] R. J. Winfield, B. Bhuian, S. O’Brien, and G. M. Crean, "Fabrication of grating structures by simultaneous multi-spot fs laser writing," Applied Surface Science, vol. 253, no. 19, pp. 8086-8090, 2007/07/31/ 2007.
[4] G. C. Firestone and A. Y. Yi, "Precision compression molding of glass microlenses and microlens arrays—an experimental study," Applied Optics, vol. 44, no. 29, pp. 6115-6122, 2005/10/10 2005.
[5] J. Yan, Z. Zhang, T. Kuriyagawa, and H. Gonda, "Fabricating micro-structured surface by using single-crystalline diamond endmill," The International Journal of Advanced Manufacturing Technology, vol. 51, pp. 957-964, 12/01 2010.
[6] G. Firestone, A. Jain, and A. Yi, "A Laboratory Apparatus for High Temperature Compression Molding of Precision Glass Optics," Review of Scientific Instruments, vol. 76, pp. 063101-063101, 05/17 2005.
[7] T. Knieling, M. Shafi, W. Lang, and W. Benecke, "Microlens array production in a microtechnological dry etch and reflow process for display applications," Journal of the European Optical Society - Rapid Publications vol 7 12007, 4 pages, vol. 7, p. 2007, 03/01 2012.
[8] S. Gorelick and A. De Marco, "Fabrication of glass microlenses using focused Xe beam," Optics Express, vol. 26, no. 10, pp. 13647-13655, 2018/05/14 2018.
[9] Y. Bellouard, A. Said, M. Dugan, and P. Bado, "Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching," Optics Express, vol. 12, no. 10, pp. 2120-2129, 2004/05/17 2004.
[10] T. Izawa, N. Shibata, and A. Takeda, "Optical attenuation in pure and doped fused silica in the ir wavelength region," Applied Physics Letters, vol. 31, no. 1, pp. 33-35, 1977/07/01 1977.
[11] K. M. Du and P. Shi, "Subsurface precision machining of glass substrates by innovative lasers," Glass Science and Technology -Frankfurt am Main-, vol. 76, pp. 95-98, 03/01 2003.
[12] W. Kautek, J. Krüger, M. Lenzner, S. Sartania, C. Spielmann, and F. Krausz, "Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps," Applied Physics Letters, vol. 69, no. 21, pp. 3146-3148, 1996/11/18 1996.
[13] C. Buerhop, B. Blumenthal, R. Weissmann, N. Lutz, and S. Biermann, "Glass surface treatment with excimer and CO2 lasers," Applied Surface Science, vol. 46, no. 1, pp. 430-434, 1990/12/02/ 1990.
[14] T. D. Bennett, D. J. Krajnovich, L. Li, and D. Wan, "Mechanism of topography formation during CO2 laser texturing of silicate glasses," Journal of Applied Physics, vol. 84, no. 5, pp. 2897-2905, 1998/09/01 1998.
[15] D. Kuo, S. D. Vierk, O. Rauch, and D. Polensky, "Laser zone texturing on glass and glass-ceramic substrates," IEEE Transactions on Magnetics, vol. 33, no. 1, pp. 944-949, 1997.
[16] A. Q. Tool, "RELATION BETWEEN INELASTIC DEFORMABILITY AND THERMAL EXPANSION OF GLASS IN ITS ANNEALING RANGE*," Journal of the American Ceramic Society, vol. 29, no. 9, pp. 240-253, 1946/09/01 1946.
[17] T.-R. Shiu, C. P. Grigoropoulos, D. G. Cahill, and R. Greif, "Mechanism of bump formation on glass substrates during laser texturing," Journal of Applied Physics, vol. 86, no. 3, pp. 1311-1316, 1999/08/01 1999.
[18] T. D. Bennett and L. Li, "Modeling laser texturing of silicate glass," Journal of Applied Physics, vol. 89, no. 2, pp. 942-950, 2001/01/15 2000.
[19] S. A. Alterovitz et al., "List of Contributors," in Handbook of Optical Constants of Solids, E. D. Palik, Ed. Boston: Academic Press, 1998, pp. xv-xviii.
[20] N. Kitamura, K. Fukumi, and J. Nishii, "Surface Modification of Densified Silica Glass by CO Laser Irradiation," Japanese Journal of Applied Physics, vol. 45, no. 3A, pp. 1725-1728, 2006/03/08 2006.
[21] J. J. P. ARNDT a D sTöEFLER and c. o. Glasses, "Anomalous changes in some properties of silica glass densified at very high pressures," vol. 10, no. 3, 1969.
[22] G. Y. Chen et al., "Femtosecond-laser-written Microstructured Waveguides in BK7 Glass," Scientific Reports, vol. 8, no. 1, p. 10377, 2018/07/10 2018.
[23] P. Yang, G. R. Burns, J. Guo, T. S. Luk, and G. A. Vawter, "Femtosecond laser-pulse-induced birefringence in optically isotropic glass," Journal of Applied Physics, vol. 95, no. 10, pp. 5280-5283, 2004/05/15 2004.
[24] Z. Wang, K. Sugioka, and K. Midorikawa, "Three-dimensional integration of microoptical components buried inside photosensitive glass by femtosecond laser direct writing," Applied Physics A, vol. 89, no. 4, pp. 951-955, 2007/12/01 2007.
[25] L. Schlessinger and J. Wright, "Inverse-bremsstrahlung absorption rate in an intense laser field," Physical Review A, vol. 20, no. 5, pp. 1934-1945, 11/01/ 1979.
[26] S. M. Eaton et al., "Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate," Optics Express, vol. 13, no. 12, pp. 4708-4716, 2005/06/13 2005.
[27] M. Shimizu et al., "Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses," Journal of Applied Physics, vol. 108, no. 7, p. 073533, 2010/10/01 2010.
[28] D. J. Little et al., "Structural changes in BK7 glass upon exposure to femtosecond laser pulses," Journal of Raman Spectroscopy, vol. 42, no. 4, pp. 715-718, 2011/04/01 2011.
[29] A. Fuerbach et al., Refractive index change mechanisms in different glasses induced by femtosecond laser irradiation. 2016, p. 99830W.
[30] K. Rastani, C. Lin, and J. S. Patel, "Active-fiber star coupler that uses arrays of microlenses and liquid-crystal modulators," Applied Optics, vol. 31, no. 16, pp. 3046-3050, 1992/06/01 1992.
[31] Y. Motoyama, K. Sugiyama, H. Tanaka, H. Tsuchioka, K. Matsusaki, and H. Fukumoto, "High-efficiency OLED microdisplay with microlens array," Journal of the Society for Information Display, vol. 27, no. 6, pp. 354-360, 2019/06/01 2019.
[32] S. Eitel, S. J. Fancey, H. Gauggel, K. Gulden, W. Bachtold, and M. R. Taghizadeh, "Highly uniform vertical-cavity surface-emitting lasers integrated with microlens arrays," IEEE Photonics Technology Letters, vol. 12, no. 5, pp. 459-461, 2000.
[33] L. Zhu, P. T. Lai, and H. W. Choi, "LED with integrated microlens array patterned by an ultraviolet linear micro-LED array," in 2010 Photonics Global Conference, 2010, pp. 1-3.
[34] Z. Wang, G. Zhu, Y. Huang, X. Zhu, and C. Zhu, "Analytical model of microlens array system homogenizer," Optics & Laser Technology, vol. 75, pp. 214-220, 2015/12/01/ 2015.
[35] D. Abookasis and J. Rosen, Microlens array help imaging hidden objects for medical applications. 2005, pp. 431-434.
[36] H. Ottevaere et al., "REVIEW ARTICLE: Comparing glass and plastic refractive microlenses fabricated with different technologies," Journal of Optics A: Pure and Applied Optics, vol. 8, 07/01 2006.
[37] J.-T. Wu and S.-Y. Yang, "A gasbag-roller-assisted UV imprinting technique for fabrication of a microlens array on a PMMA substrate," Journal of Micromechanics and Microengineering, vol. 20, no. 8, p. 085038, 2010/07/21 2010.
[38] R. Guo, D. Yuan, and S. Das, "Large-area microlens arrays fabricated on flexible polycarbonate sheets via single-step laser interference ablation," Journal of Micromechanics and Microengineering, vol. 21, no. 1, p. 015010, 2010/12/21 2010.
[39] Y.-S. Cherng and G.-D. J. Su, "Fabrication of polydimethylsiloxane microlens array on spherical surface using multi-replication process," Journal of Micromechanics and Microengineering, vol. 24, no. 1, p. 015016, 2013/12/09 2013.
[40] X. Liu, L. Yu, Q. Chen, L. Cao, B. Bai, and H. Sun, "Sapphire Concave Microlens Arrays for High-Fluence Pulsed Laser Homogenization," IEEE Photonics Technology Letters, vol. 31, no. 20, pp. 1615-1618, 2019.
[41] Z. Deng et al., "Fabrication of large-area concave microlens array on silicon by femtosecond laser micromachining," Optics Letters, vol. 40, no. 9, pp. 1928-1931, 2015/05/01 2015.
[42] D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, "Microjet fabrication of microlens arrays," IEEE Photonics Technology Letters, vol. 6, no. 9, pp. 1112-1114, 1994.
[43] N. S. Ong, Y. H. Koh, and Y. Q. Fu, "Microlens array produced using hot embossing process," Microelectronic Engineering, vol. 60, no. 3, pp. 365-379, 2002/04/01/ 2002.
[44] C.-H. Tien, Y.-E. Chien, Y. Chiu, and H.-P. Shieh, "Microlens Array Fabricated by Excimer Laser Micromachining with Gray-tone Photolithography," Japanese Journal of Applied Physics, vol. 42, pp. 1280-1283, 03/15 2003.
[45] Y. Chen, A. Y. Yi, D. Yao, F. Klocke, and G. Pongs, "A reflow process for glass microlens array fabrication by use of precision compression molding," Journal of Micromechanics and Microengineering, vol. 18, no. 5, p. 055022, 2008/04/08 2008.
[46] S. Audran et al., "Study of dynamical formation and shape of microlenses formed by the reflow method," in Proc.SPIE, 2006, vol. 6153.
[47] W. Yuan, L.-H. Li, W.-B. Lee, and C.-Y. Chan, "Fabrication of Microlens Array and Its Application: A Review," Chinese Journal of Mechanical Engineering, vol. 31, no. 1, p. 16, 2018/02/27 2018.
[48] D.-N. Nguyen, "FEA and Experimentally Determination of Applied Elasticity Problem for Fabricating Aspheric Surfaces," 2018.
[49] C.-Y. Huang, W.-T. Hsiao, K.-C. Huang, K.-S. Chang, H.-Y. Chou, and C.-P. Chou, "Fabrication of a double-sided micro-lens array by a glass molding technique," Journal of Micromechanics and Microengineering, vol. 21, no. 8, p. 085020, 2011/07/12 2011.
[50] M. Wakaki, Y. Komachi, and G. Kanai, "Microlenses and microlens arrays formed on a glass plate by use of a CO2 laser," Applied Optics, vol. 37, no. 4, pp. 627-631, 1998/02/01 1998.
[51] G. Daniel Nieto et al., "Laser-based microstructuring of surfaces using low-cost microlens arrays," Journal of Micro/Nanolithography, MEMS, and MOEMS, vol. 11, no. 2, pp. 1-8, 6/1 2012.
[52] I.-B. Sohn, H.-K. Choi, Y.-C. Noh, J. Kim, and M. S. Ahsan, "Laser assisted fabrication of micro-lens array and characterization of their beam shaping property," Applied Surface Science, vol. 479, pp. 375-385, 2019/06/15/ 2019.
[53] J. G. Hua et al., "Convex silica microlens arrays via femtosecond laser writing," Opt Lett, vol. 45, no. 3, pp. 636-639, 2020.
[54] G. K. Kostyuk, R. A. Zakoldaev, M. M. Sergeev, and E. B. Yakovlev, Microlens array fabrication on fused silica influenced by NIR laser. 2016.
[55] S. M. Metev and V. P. Veiko, Laser-assisted microtechnology. Springer Science & Business Media, 2013.
[56] Y. Wei et al., "Fabrication of high integrated microlens arrays on a glass substrate for 3D micro-optical systems," Applied Surface Science, vol. 457, pp. 1202-1207, 2018/11/01/ 2018.
[57] C. Incorporated, "EAGLE XG® Slim Glass Product Information Sheet," Internet 2013. Corning Incorporated
[58] "Focusing of spherical Gaussian beams," Applied Optics, vol. 22, no. 5, pp. 658-661, 1983/03/01 1983.
[59] D. P. Hand and P. S. J. Russell, "Solitary thermal shock waves and optical damage in optical fibers: the fiber fuse," Optics Letters, vol. 13, no. 9, pp. 767-769, 1988/09/01 1988.
[60] M. Yoshioka, H. Hidai, and H. Tokura, "CW-laser induced modification in glasses by laser backside irradiation (LBI)," in Proc.SPIE, 2006, vol. 6106.
[61] Y. Shuto, S. Yanagi, S. Asakawa, M. Kobayashi, and R. Nagase, "Evaluation of high-temperature absorption coefficients of optical fibers," IEEE Photonics Technology Letters, vol. 16, no. 4, pp. 1008-1010, 2004.
[62] Y. Shuto, "Evaluation of High-Temperature Absorption Coefficients of Ionized Gas Plasmas in Optical Fibers," IEEE Photonics Technology Letters, vol. 22, no. 3, pp. 134-136, 2010.
[63] I. Miyamoto, K. Cvecek, and M. Schmidt, "Evaluation of nonlinear absorptivity in internal modification of bulk glass by ultrashort laser pulses," Optics express, vol. 19, pp. 10714-27, 05/23 2011.
[64] R. Yoshizaki et al., "Abrupt initiation of material removal by focusing continuous-wave fiber laser on glass," Applied Physics A, vol. 126, no. 9, p. 715, 2020/08/19 2020.
[65] W. Gao, S. Zhao, F. Liu, Y. Wang, C. Zhou, and X. Lin, "Effect of defocus manner on laser cladding of Fe-based alloy powder," Surface and Coatings Technology, vol. 248, pp. 54-62, 2014/06/15/ 2014.
[66] P. D Antonio, M. Lasalvia, G. Perna, and V. Capozzi, "Scale-independent roughness value of cell membranes studied by means of AFM technique," Biochimica et Biophysica Acta (BBA) - Biomembranes, vol. 1818, no. 12, pp. 3141-3148, 2012/12/01/ 2012.
[67] H. Liu et al., "Photoetching of spherical microlenses on glasses using a femtosecond laser," Optics Communications, vol. 282, no. 20, pp. 4119-4123, 2009/10/15/ 2009.
[68] H. L. Feng Chen, Qing Yang, Xianhua Wang, Cong Hou, Hao Bian, Weiwei Liang, Jinhai Si, and Xun Hou, "Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method," Optics Express, vol. 18, no. 19, pp. 20334-20343, 2010/09/13 2010.
電子全文 電子全文(網際網路公開日期:20240126)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top